350 rub
Journal Radioengineering №7 for 2016 г.
Article in number:
Development of planar slow-wave structures on dielectric substrates for millimeter- and submillimeter wave vacuum microelectronic devices
Authors:
A.I. Benedik - Post-graduate Student, Engineer, Saratov State University named after N.G. Chernyshevsky. E-mail: andrej-benedik@yandex.ru A.G. Rozhnev - Senior Research Scientist, Saratov State University named after N.G. Chernyshevsky. E-mail: RozhnevAG@info.sgu.ru N.M. Ryskin - Dr. Sc. (Phys.-Math.), Professor, Head of Department, Saratov State University named after N.G. Chernyshevsky, Senior Research Scientist, Saratov branch of Kotel\'nikov IRE of RAS. E-mail: RyskinNM@info.sgu.ru N.I. Sinitsyn - Dr. Sc. (Phys.-Math.), Deputy Director, Saratov branch of Kotel\'nikov IRE of RAS. E-mail: SinitsynNI@gmail.com G.V. Torgashov - Ph. D. (Phys.-Math.), Head of Laboratory, Saratov branch of Kotel\'nikov IRE of RAS. E-mail: TorgashovGV@gmail.com P.D. Shalaev - Ph. D. (Eng.), Head of Department, JSC «SPE «Almaz» (Saratov). E-mail: p.d.shalaev@yandex.ru
Abstract:
In this paper, the results of research of planar slow-wave structure (SWS) on dielectric substrates for miniaturized amplifiers and os-cillators of O type at millimeter and sub-millimeter band are discussed. Planar SWS like a metallized meander microstrip line and in-terdigital SWS were considered. The meander SWS is supposed to be used in a traveling wave tube where effective wave-beam inte-raction with fundamental forward space harmonic takes place, while the interdigital SWS is assumed to be used in a backward-wave oscillator where backward space harmonic is a working mode. In Section 1, the results of electromagnetic modeling of planar SWS using the 3D ANSYS HFSS software package are presented. De-pendences of basic electrodynamic characteristics such as dispersion and coupling impedance on geometry of the SWS have been studied. Simulation and parameter optimization of the planar SWS in G and V band taking into account fabrication tolerance were carried out. Section 2 is devoted to fabrication issues of the planar SWS on dielectric substrates using modern photolithography technology. The technology of copper films deposition on a dielectric substrate with a chrome underlayer has been developed. Using the results of electromagnetic modeling, SWS at 180−230 GHz and 50−60 GHz frequency bands were designed and metallization masks were de-veloped. Samples of the meander and interdigital SWS circuits on silica and sapphire substrate were fabricated.
Pages: 47-52
References

 

  1. Rozhnev A.G., Ryskin N.M., Sokolov D.V., Trubetskov D.I., Han S.T., Kim J.I., Park G.S. Novel concepts of vacuum microelectronic microwave devices with field emitter cathode arrays // Physics of Plasmas. 2002. V. 9. № 9. P. 4020−4027.
  2. Srivastava V. THz vacuum microelectronic devices // J. Physics: Conf. Series. 2008. V. 114. № 1. P. 012015.
  3. Booske J.H., Dobbs R.J., Joye C.D., Kory C.L., Neil G.R., Park G.S., Park J.H., Temkin R.J. Vacuum electronic high power terahertz sources // IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. № 1. P. 54−75.
  4. Rozhnjov A.G., Ryskin N.M., Karetnikova T.A., Torgashov G.V., Sinicyn N.I., SHalaev P.D., Burcev A.A. Issledovanie kharakteristik zamedljajushhejj sistemy lampy begushhejj volny millimetrovogo diapazona s lentochnym ehlektronnym puchkom // Izvestija VUZov. Radiofizika. 2013. T. 56. № 8−9. S. 601−613.
  5. Karetnikova T.A., Rozhnev A.G., Ryskin N.M., Torgashov G.V., Torgashov I.G., Sinicyn N.I. Voprosy razrabotki usilitelejj i generatorov O‑tipa subteragercevogo diapazona chastot // Radiotekhnika. 2014. № 10. S. 46−51.
  6. Karetnikova T.A., Rozhnjov A.G., Ryskin N.M., Torgashov G.V., Sinicyn N.I., Grigorev JU.A., Burcev A.A., SHalaev P.D. Modelirovanie lampy begushhejj volny subteragercevogo diapazona s zamedljajushhejj sistemojj tipa sdvoennojj grebenki i lentochnym ehlektronnym puchkom // Radiotekhnika i ehlektronika. 2016. T. 61. № 1. S. 54−60.
  7. Guljaev JU.V., Zakharchenko JU.F., ZHbanov A.I., Nefedov I.S., Sinicyn N.I., Torgashov G.V. Planarnye zamedljajushhie sistemy miniatjurnykh ehlektrovakuumnykh SVCH priborov // Radiotekhnika i ehlektronika. 1994. T. 39. № 12. S. 2049−2058.
  8. Sengele S., Jiang H., Booske J.H., Kory C.L., van der Weide D.W., Ives R.L. Microfabrication and characterization of a selectively metallized W‑Band meander-line TWT circuit // IEEE Trans. Electron Devices. 2009. V. 56. № 5. P. 730−737.
  9. Shen F., Wei Y.-Y., Xu X., Liu Y., Yin H.-R., Gong Y.-B., Wang W.-X. 140-GHz V‑shaped microstrip meander-line traveling wave tube // J. Electromagnetic Waves and Applications. 2012. V. 26. № 1. P. 89−98.
  10. Sumathy M, Augustin D, Datta S.K., Christie L., Kumar L. Design and RF characterization of W‑band meander-line and folded-waveguide slow-wave structures for TWTs // IEEE Trans. Electron Devices. 2013. V. 60. № 5. P. 1769−1775.
  11. Nguyen L.B., Antonsen T.M., Nusinovich G.S. Planar slow-wave structure with parasitic mode control // IEEE Trans. Electron Devices. 2014. V. 61. № 6. P. 1655−1660.
  12. Bai N., Shen M., Sun X. Investigation of microstrip meander-line traveling-wave tube using EBG Ground Plane // IEEE Trans. Electron Devices. 2015. V. 62. № 5. P. 1622−1627.
  13. High Frequency Structure Simulator (HFSS) of ANSYS. URL = http://www.ansoft.com/products/hf/hfss/