350 rub
Journal Radioengineering №3 for 2016 г.
Article in number:
Design and fabrication of microwave integrated optical electrodeless electric field sensor
Authors:
A.A. Zhuravlev - Post-graduate Student, Department of Applied Mathematics, Perm National Research Polytechnic University. E-mail: antonzhuravlev@gmail.com I.L. Volkhin - Ph. D. (Phys.-Math.), Associate Professor, Department of Radio Electronics and Information Security, Perm State National Research University. E-mail: volkhin@psu.ru A.N. Smirnova - Post-graduate Student, Department of Applied Mathematics, Perm National Research Polytechnic University. E-mail: anna.nikol.smirnova@gmail.com D.I. Shevtsov - Ph. D. (Phys.-Math.), Head of Department, JSC «Perm Scientific Industrial Instrument Making Company». E-mail: shevtsov@ppk.perm.ru V.P. Pervadchuk - Dr. Sc. (Eng.), Professor, Head of Department of Applied Mathematics, Perm National Research Polytechnic University. E-mail: pervadchuk@mail.ru
Abstract:
The microwave (f ~ 10 GHz) integrated optical electric field sensor was designed on a LiNbO3 substrate. It is based on an integrated optical Mach-Zehnder interferometer. The operating principle is based on an electro-optical effect in lithium niobate. The sensor is an electrodeless device. Electric field vectors in the arms of the interferometer are unidirectional. In order to make the sensor sensitive to a uniform electric field, a domain inverted area was made in one of the arms of the interferometer which changes the substrate-s spontaneous polarization field direction, and thus leads to change of the electro-optical coefficient sign. Under the uniform electric field the phase of the optical signal increases in one arm of the interferometer and decreases in the other. If the sensor operates in a linear area, the amplitude of the output optical signal is proportional to the electric field under measure. To shift the operating point (without electric field) to the middle of the linear area of the transfer characteristic, an integrated optical interferometer with asymmetric topology of optical channel waveguides was used. At higher frequencies of the electric field the length of the electro-optical interaction region decreases, which leads to reduced sensitivity. To maintain the sensitivity the fabricated sensors have a «checkerboard» structure consisting of 14 sequentially located regions of electro-optical interaction. Sensitivity of the sensor was measured with the application of experimental equipment based on an H shaped asymmetrical waveguide having regular inhomogenities. It allowed to create a high-voltage electric field of about 100 kV/m at 10 GHz around the sensors - detecting elements using a 1 W microwave generator. The measured sensitivity was about 1.2 mW∙m/kV.
Pages: 88-96
References

 

  1. LiChen, Ronald M. Reano. Compactelectricfieldsensorsbasedonindirectbondingoflithiumniobatetosiliconmicrorings // OpticsExpress 4032. 2012. V. 20. № 4. P. 4032−4038.
  2. Hong-SikJungElectro-opticElectricFieldSensorUtilizingTi:LiNbO3 SymmetricMach-ZehnderInterferometers // JournaloftheOpticalSocietyofKorea. 2012. V. 16. № 1. P. 47−52.
  3. Fukui Y, Okumura K, Moritake H, Murooka Y.AtypicalnoiselessPockelsEfieldsensor // Rev. Sci. Instrum. 2010. V. 81. 114701.
  4. Kaixin Chen, Bao Sun, Fushen Chen, Zhefeng Hu, Yongsheng Cao.Lithiumniobatephotonicsensorformeasurementofpulsedelectricfieldwithnanosecondrisetime // MicrowaveandOpticalTechnologyLetters. 2012. V. 54. № 2. P. 421−423.
  5. Chadderdon S, Woodard L, Perry D, Selfridge R. H, Schultz S.M.Improvementsinelectric-fieldsensorsensitivitybyexploitingatangentialfieldcondition // AppliedOptics. 2013. V. 52. № 23.
  6. Volokonno-opticheskie datchiki. Vvodnyjj kurs dlja inzhenerov i nauchnykh rabotnikov / Pod red. EH. Udda. M.: Tekhnosfera. 2008.
  7. ZHuravlev A.A., Bratishko S.A., Pervadchuk V.P. Metod rascheta ehlektroopticheskikh kharakteristik shirokopolosnogo integralno-opticheskogo moduljatora intensivnosti opticheskogo izluchenija // Foton-ehkspress. 2013. № 6 (110). S. 159−160.
  8. Voblikov E.D., Volyncev A.B., ZHuravlev A.A., Kichanov A.V., SHevcov D.I., Ponomarev R.S. Integralno-opticheskijj moduljator na osnove interferometra Makha-Cendera s asimmetrichnojj topologiejj volnovodov // Trudy MAI. 2011. № 46. S. 22.
  9. Zhuravlev A.A., Shevtsov D.I., Semenishev A.P., Mamykin A.D.Numericsimulationoftheintegratedelectro-opticalintensitymodulatoronlithiumniobatesubstrateasapartofmicrowavepath // InternationalWorkshopandTutorialsonElectronDevicesandMaterials. EDMProceedings Ser. «2012 13thAnnualInternationalConferenceandSeminarofYoungSpecialistsonMicro/NanotechnologiesandElectronDevices. EDM\'2012 Proceedings» 2012. S. 72−76.
  10. Ponomarev R.S., Volyncev A.B. Vlijanie defektnojj struktury LiNbO3 na rabotu integralno-opticheskojj skhemy // Vestnik Permskogo universiteta. Ser. Fizika. 2012. № 2. S. 72−77.
  11. Ponomarev R.S., Volyncev A.B. Vlijanie defektnojj struktury kongruehntnogo niobata litija na rabotu integralno-opticheskojj skhemy // Fundamentalnye problemy sovremennogo materialovedenija. 2012. T. 9. № 3. S. 388−393.
  12. Ponomarev R.S., Zhuravlev A.A., Kichanov A.V.RelaxationprocessesofmobilechargesinintegratedopticsMach-Zehnderinterferometer // 12thInternationalConferenceandSeminaronMicro/NanotechnologiesandElectronDevices. EDM\'2011 Proceedings. 2011. S. 336−338.
  13. Ponomarev R.S., Azanova I.S., Volyncev A.B. Istochniki dolgovremennogo drejjfa v opticheskikh amplitudnykh moduljatorakh // Foton-ehkspress. 2013. № 6 (110). S. 226.
  14. Wong K.K. Propertiesoflithiumniobate// EnglandbyShortRunPressLtd. 2002. P. 123.
  15. Ed L. Wooten, Karl M. Kissa, Alfredo Yi-Yan, Edmond J. Murphy, Donald A. Lafaw, Peter F. Hallemeier, David Maack, Daniel V. Attanasio, Daniel J. Fritz, Gregory J. McBrien, Donald E. Bossi. AReviewofLithiumNiobateModulatorsforFiber-OpticCommunicationsSystems // IEEEJournalofselectedtopicsinquantumelectronics. 2000. V. 6. № 1. P. 72.
  16. ZHuravlev A.A., Volkhin I.L., SHevcov D.I., Pervadchuk V.P. Metodika opredelenija chuvstvitelnosti integralno-opticheskogo sensora naprjazhennosti ehlektricheskogo polja vysokojj chastoty // Vestnik Permskogo universiteta. Ser. Fizika. 2013. № 3. S. 78−82.
  17. M.P. De Micheli. FabricationandCharacterizationofProtonExchangedWaveguidesinPeriodicallyPoledCongruentLithiumNiobate // Ferroelectrics. 2006. V. 340. № 1. P. 49−62.
  18. Smirnova A.N., Mushinskijj S.S., Azanova I.S., SHevcov D.I. Formirovanie domenov na kanalnykh volnovodakh, poluchennykh metodom protonnogo obmena s posledujushhim otzhigom // Fundamentalnye problemy sovremennogo materialovedenija. 2012. T. 9 № 4.
  19. Sones C.L., Mailis S., Brocklesby W.S.etal. Differentialetchratesinz‑cutLiNbO3 forvariableHF/HNO3 concentrations // J. Mater. Chem. 2002. № 12. P. 295−298.
  20. Smirnova A.N., Mushinsky S S., Baturin I.S., Azanova I.S., Shevtsov D.I., Akhmatkhanov A.R., Ievlev A.V.andV. YA. Shur. ElectricFieldPolingofLithiumNiobateCrystalsafterProton-ExchangedChannelWaveguideFabrication // Ferroelectrics. 2012. 441:1−8.
  21. Volkhin I.L., ZHuravlev A.A., Kotelnikov E.A. CHislennoe modelirovanie parametrov volnovoda N‑obraznogo sechenija asimmetrichnojj konstrukcii // Sb. statejj IIMezhdunar. zaochnojj nauchno-tekhnich. konf. «Algoritmicheskie i programmnye sredstva v informacionnykh tekhnologijakh, radioehlektronike i telekommunikacijakh». Toljatti. 2014. S. 72−77.
  22. ZHuravlev A.A., Volkhin I.L., Kotelnikov E.A., SHevcov D.I., Pervadchuk V.P. Izmerenie SVCH-parametrov volnovoda N‑obraznogo sechenija asimmetrichnojj konstrukcii // Vestnik Permskogo universiteta. Ser. Fizika. 2014. № 1 (26). S. 17−20.
  23. Anton A. Zhuravlev, Igor L. Volkhin, Roman S. Ponomarev, Anna N. Smirnova, Denis I. Shevtsov, Vladimir P. Pervadchuk. Applyingofmicrowaveasymmetricaldouble-ridgedwaveguideformeasuringoftheintegratedopticalelectrodelesselectricfieldsensorsensitivity // ReviewofScientificInstruments. 2014. V. 85. 054708.