350 rub
Journal Radioengineering №3 for 2016 г.
Article in number:
Radio signal attenuation variance estimate in mobile radio communication systems
Authors:
Yu.G. Bulychev - Dr. Sc. (Eng.), Honored Scientist of RF, Professor, Head Laboratory, JSC «VNII «Gradient» (Rostov-on-Don). E-mail: ProfBulychev@yandex.ru A.A. Mozol - Ph. D. (Eng.), Junior Research Scientist, SPA «Special Equipment and Telecoms» of MIA RF (Rostov-on-Don). E-mail: alex-militar@bk.ru V.A. Golovskoi - Ph. D. (Eng.), Senior Research Scientist, SPA «Special Equipment and Telecoms» of MIA RF (Rostov-on-Don). E-mail: golovskoy_va@mail.ru
Abstract:
Mobile radio communication is the most popular telecommunicational service at the present time. The problem of radio signal attenuation magnitude between base station and mobile station estimation begins when mobile radio communication system signal coverage forecasting. Mobile radio communication system operation actual conditions make it possible to consider radio signal attenuation as function of various random variables. Attempt to estimate effect of random nature of key parameters of Okumura-Hata & Ibrahim-Parsons propagation models on radio signal attenuation determination accuracy, as applied to Okumura-Hata & Ibrahim-Parsons propagation models, is taken up in paper. Radio signal attenuation variance value is used as measure of accuracy. Random arguments function linearization principle is used for generation of analytical relations allowing to do research of propagation model parameter random nature effect on radio signal attenuation variance. Computer simulation was carried on and corresponding schematic linear connections were plotted on the basis of obtained analytic dependences. Obtained results can be used in design stages of professional mobile radio communication systems and their under-control operation for evaluation and analysis of their functional efficiency characteristics.
Pages: 23-27
References

 

  1. Saunders S.R., Aragon-Zavala A. Antennas and propagation for wireless communication systems. Chichester: John Wiley & Sons Ltd. 2007. 546 p.
  2. Recommendation ITU‑R P.1546‑5. Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz // International Telecommunication Union. URL: http://www.itu.int/rec/R-REC‑P.1546-5-201309-I/en (data obrashhenija 10.04.2015).
  3. Recommendation ITU‑R P.1411‑7. Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz // International Telecommunication Union. URL: http://www.itu.int/rec/R-REC‑P.1411-7-201309-I/en (data obrashhenija 10.04.2015).
  4. Seybold J.S. Introduction to RF Propagation. Hoboken: John Wiley & Sons. Inc. 2005. 352 p.
  5. Ventcel E.S., Ovcharov L.A. Teorija verojatnostejj i ee inzhenernye prilozhenija: ucheb. posobie dlja stud. vtuzov. M.: Izdatelskijj centr «Akademija». 2003. 464 s.
  6. Bulychev JU.G., Manin A.P. Matematicheskie aspekty opredelenija dvizhenija letatelnykh apparatov. M.: Mashinostroenie. 2000. 256 s.
  7. Svedenija zakaza // Oficialnyjj sajjt Rossijjskojj Federacii v seti Internet dlja razmeshhenija informacii o razmeshhenii zakazov na postavki tovarov, vypolnenie rabot, okazanie uslug. URL: http://zakupki.gov.ru/pgz/public/action/orders/info /order_document_list_info/show-source=epz¬ificationId=1749614 (data obrashhenija 10.04.2015).
  8. Mozol A.A., Golovskojj V.A. Poluehmpiricheskijj sposob opredelenija zony pokrytija bazovojj stancii sistemy podvizhnojj radiosvjazi // Vestnik Voronezhskogo instituta MVD Rossii. 2014. № 3. S. 30−40.