350 rub
Journal Radioengineering №11 for 2016 г.
Article in number:
Powerful broadband «Radio-on-fiber» photonic non-volatile radio-frequency antennas
Authors:
V.M. Andreev - Dr. Sc. (Eng.), Professor, Ioffe Physical-Technical Institute (St Petersburg) D.F. Zaitsev - Dr. Sc. (Eng.), Main Designer, Laboratory RFS, JSC «CRET» E-mail: zaysev@yandex.ru N.Yu. Novikov - Ph. D. (Eng.), Deputy Head of Laboratory RFS, JSC «CRET» V.S. Kalinovsky - Senior Research Scientist, Ioffe Physical-Technical Institute (St Petersburg) D.V. Mordasov - Junior Research Scientist, Laboratory RFS, JSC «CRET» S.O. Slipchenko - Ph. D. (Phys.-Math.), Senior Research Scientist, Ioffe Physical-Technical Institute (St Petersburg) I.S. Tarasov - Dr. Sc. (Phys.-Math.), Professor, Main Research Scientist, Ioffe Physical-Technical Institute (St Petersburg) A.I. Fadeev - Junior Research Scientist, Laboratory RFS, JSC «CRET»
Abstract:
In the last decade intensively developed in the world combined (hybrid) lines of communication «Radio-on-Fiber» (RoF), which brings together fixed line fiber optic line with essential lines of communication with moving objects (Wi-Fi, Wi-Max, cell lines 3G and 4G, etc.) [1−18]. However, most of the terminal antenna system devices, described in many sources volatile, as they have in its composition powerful electronic wideband amplifiers ie require for their operation a third-party or internal sources of supply, which greatly increases their weight, cost, reduces reliability, efficiency, and most importantly, makes these terminals are not applicable for objects with increased explosion and fire risk, where reliable communication is of special value (mines, storage of explosives, chemicals, etc.) because of the probability of short circuits and sparking. Therefore, the creation of terminal non-volatile devices broadband «Radio-on-Fiber» large enough to service a significant number of subscribers within a radius of about 1 km (the last mile) is an urgent task. The first practical step in the establishment of such antennas was the elimination of the radio frequency amplifiers of the terminal part of the antenna device, such antenna usually referred to as «Fiber to the antenna» (fiber-to-the antenna system, or abbreviated (FTTA) [12] or photonic antennas [13−17]. However, such antennas have retained partial dependence due to the presence of the electrical bias of the photodetector (photodiode in the photodiode mode) and electric displacement of the operating point of the optical modulator. The development of the transmitting circuits, «Radio-on-Fiber» non-volatile antennas for a long time was hampered by the lack of powerful sources of optical signal with a wideband modulation having a high efficiency and fiber output optical fiber for transmitting significant optical power with low loss wide frequency band modulation and high-speed photodetectors optical signal, effectively working in the photovoltaic mode (without electrical offset). In this paper describes a powerful (over 1 W) broadband photonic fiber-optic lines for transmission of pulse signals of the nanosecond range (up to several ns) the duration variable in a wide range of frequencies (from kHz to several tens MHz) and their subsequent broadcast on a broadband channel using non-volatile photonic antennas.
Pages: 177-184
References

 

  1. Ma. J., Li Y. A full-duplex multiband access radio-over-fiber link with frequency multiplying millimeter-wave generation and wavelength reuse for upstream signal // Optics Communications. 2014. № 1. P. 22−26.
  2. Gordon G.S.D., Crisp M.J., Penty R.V., White I.H. Experimental Evaluation of Layout Designs for 3×3 MIMO - Enabled Radio-over-Fibre Distributed Antenna Systems // IEEE Transactions on Vehicular Technology. 2014. № 2. P. 1−11.
  3. Wake D., Nkansah A., Gomes N.J., Lethien C., Sion C., Vilcot J.-P. Optically powered remote units for radio-over-fiber systems // Journal of lightwave technology. 1 August 2008. V. 26. № 15. P. 2464−2490.
  4. Matsuura M., Sato J. Bidirectional Radio-over-fiber systems using double-clad fibers for optically powered remote antenna units // IEEE Photonics Journal. 2015. V. 7. № 1. P. 1−10. DOI: 10.1109/JPHOT.2014.2381669.
  5. Matsuura M., Furugori H., Sato J. 60 W power-over-fiber using double-clad fibers for radio-over-fiber systems with optically powered remote antenna units // Optics Letters. 2015. V. 40. № 23. P. 5598−5601.
  6. Sauer M, Kobyakov A., George j. Radio Over Fiber for Picocellular Network Architectures // Journal of lightwave technology. 2007. V. 25. № 11. P. 3301−3318.
  7. Larrodé M.G., Koonen A.M.J., Olmos J.J.V., Ng-Oma A. Bidirectional Radio-Over-Fiber Link Employing Optical Frequency Multiplication // IEEE Photonics Technology Letters. 1 January 2006. V. 18. № 1.  P. 241−243.
  8. Rahman M.S., Lee J.H., Park Y. and Kim K.-D. Radio over Fiber as a Cost Effective Technology for Transmission of WiMAX // World Academy of Science, Engineering and Technology. 2009. № 56. P. 424−427.
  9. Medeiros M.C.R., Avó R., Laurˆencio P., Correia N.S., Barradas A., da Silva H.J. Darwazeh A.I., Mitchell J.E., Monteiro P.M.N. Using Phase-Modulated Downlink and Intensity-Modulated Uplink // IEEE Photonics Technology Letters. 2009. V. 21. № 1. P. 9−11.
  10. Ng-oma A. Radio-over-Fibre Technology for Broadband Wireless Communication Systems // PROEFSCHRIFT. Technische Universiteit Eindhoven. 2005. 171 pp.
  11. Somnath M. Radio over Fiber Architecture for Metro Access and Backhaul // San Jose. CA: Presented at Wireless Communication Alliance (WCA). 2006. P. 1−28.
  12. Chow C.W., Kuo F.M., Shi J.W., Yeh C.H., Wu Y.F., Wang C.H., Li Y.T., Pan C.L. 100 GHz ultra-wideband (UWB) fiber-to-the antenna (FTTA) system for in-building and inhome networks // Optics express. 2010. V. 18. № 2. P. 473−478.
  13. Kostko I.A., Pasandi M.E., Sisto M.M., Larochelle S., Rusch L.A., Plant D.V. A radio-over-fiber link for OFDM transmission without RF amplification // 2009. TuU4 2:30 PM - 2:45 PM. P. 1−2.
  14. Keren L., Toshiaki M., Masayuki I. Photonic Antennas and its Application to Radio-over-Fiber Wireless Communication Systems // Journal of the National Institute of Information and Communications Technology. 2004. V. 51. № 1/2. P. 141−149.
  15. Yashchyshyn Y., Chizh A., Malyshev S., Modelski J. Technologies and Applications of Microwave Photonic Antennas // Proceedings of TCSET\'2010. 2010. Lviv-Slavske.-February 23−27. P. 11−14.
  16. CHizh A.L., Malyshev S.A., JAshhishin E. Integrirovannaja fotonnaja antenna na osnove vysokoskorostnogo fotodioda dlja sistem radiosvjazi s opticheskimi magistraljami // Materialy 7‑jj Belorussko-Rossijjskogo seminara «Poluprovodnikovye lazery i sistemy». Minsk. 5 ijunja 2006. P. 1−14.
  17. Lysiuk A., Godziszewski K., Yashchyshyn Ye. Radio over Fiber Link for short range Wireless Communication // Vіsnik DUІKT. 2013. № 3. P. 26−31.
  18. Malyshev S.A., CHizh A.L., Mikitchuk K.B. Volokonno-opticheskie lazernye i fotodiodnye moduli SVCH-diapazona i sistemy radiofotoniki na ikh osnove (Institut fiziki NAN Belarusi) // Materialy V Vseros. nauchno-tekhnich. konf. «EHlektronika i mikroehlektronika SVCH». Sankt-Peterburg. 30 maja - 2 ijunja 2016 . S. 10−18.
  19. Bakhrakh L.D., Zajjcev D.F. Fazirovannye antennye reshetki na osnove raspredelennykh opticheskikh antennykh modulejj // Doklady AN. 2004. T. 394. № 4. S. 465−468.
  20. Pat. RF № 2298810. Priemno-peredajushhijj optoehlektronnyjj modul AFAR / Zajjcev D.F. № 2005130539; Zajavl. 4.10.2005.
  21. Goutzoulis A. Zomp J. An Eight - element Optically Powered, Directly Modulated Receive UNF Fiber- Optic Manifold // Microwave Journal. 1996. V. 39. № 2. P. 74−86.
  22. Bakhrakh L.D., Zajjcev D.F. Perspektivy primenenija analogovojj fotoniki v radiolokacionnykh sistemakh // Antenny. 2004. № 8−9(87−88). S. 134−138.
  23. Zajjcev D.F. Nanofotonika i ee primenenie. M.: Izd-vo AKTEON. 2012. 445 s. ISBN 978-5- 91142-045-1.
  24. Alferov ZH.I., Andreev V.M., Rumjancev V.D. Tendencii i perspektivy razvitija solnechnojj fotoehnergetiki // Fizika i tekhnika poluprovodnikov. 2004. T. 38. № 8. S. 937−947.
  25. Zajjcev D.F. Teoreticheskoe issledovanie chastotnykh kharakteristik i temperaturnogo drejjfa moshhnykh kvantovorazmernykh geterolazerov s λ = 0,85-1,05 mkm pri neposredstvennojj SVCH-moduljacii // Antenny. 2010. № 8. S. 25−38.
  26. Zajjcev D.F. Issledovanie chastotnogo potenciala moshhnykh kvantovorazmernykh geterolazerov // Antenny. 2013. № 8. S. 55−59.
  27. Engelbrecht R., Groh J., Stumpf C., Adametz J., Schmauss B. Large-Signal RF Circuit Model for a High-Power Laser Diode Module // IEEE Photonics Technology Letters. 2014. V. 26. № 8. P. 761−764.
  28. Dorsey W.M., Parent M.G., Long S.A. RF Photonic, In-Situ, Real-Time Phased Array Antenna Calibration System / Naval Research Laboratory, Washington, DC 20375-5320, 2010,  NRL/MR/5310--10-9312. P. 1−50.
  29. Ito H., Nagatsuma T., Ishibashi T. Uni-Traveling-Carrier Photodiodes for High-Speed Detection and Broadband Sensing // Proc. of SPIE. 2007. V. 6479. P. 64790X-1- 64790X-14.
  30. Tulchinsky D.A., Boos J.B., Park D., Goetz P.G., Rabinovich W.S., Williams K.J. High-Current Photodetectors as Efficient, Linear, and High-Power RF Output Stages // Journ. Of Lighwave Technol. 2008. V. 26. № 4. P. 408−416.
  31. Bowers J.E., Burrus C.A. High-speed zero-bias waveguide photodetectors // Electron. Lett. 1986. V. 22. P. 905−906.
  32. Jutzi M., Berroth M., Wohl G., Oehme M., Kasper E. Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth // IEEE Photon.Technol. Lett. 2005. V. 17. № 7. P. 1510−512.
  33. Oehme M., Werner J., Kasper E., Jutzi M., Berroth M. High bandwidth Ge p-i-n photodetector integrated on Si // Appl. Phys. Lett. 2006. V. 89. P. 2337003−233705.
  34. Feng N.- N., Dong P., Zheng D., Liao S., Liang H., Shafiiha R., Feng D., Li G., Cunningham J.E., Krishnamoorthy A.V. and Asghari M. Vertical p - i ? n germanium photodetector with high external responsivity integrated with large core Si waveguides // Optics express. 2010. V. 18. № 1. P. 96−101.