350 rub
Journal Radioengineering №11 for 2016 г.
Article in number:
Design of high power microfocus X ray tube
Authors:
E.Yu. Grachev - Ph. D. (Eng.), Associate Professor, Department «Industrial Electronics», Ryazan State Radio Engineering University E-mail: monopol_rus@mail.ru V.S. Gurov - Dr. Sc. (Eng.), Professor, Head of Department «Industrial Electronics», Rector of Ryazan State Radio Engineering University E-mail: gurovvs@mail.ru A.A. Skuntsev - Junior Research Scientist, Ryazan State Radio Engineering University E-mail: a_skuncev@mail.ru A.A. Trubitsyn - Dr. Sc. (Phys.-Math.), Professor, Department «Industrial Electronics», Ryazan State Radio Engineering University E-mail: assur@bk.ru
Abstract:
Microfocus x ray tubes (sources) are tools for extracting the unique information concerning the micro - and macrostructure of materials examined, their chemical status. The purpose of this study is to create a transmission microfocus tube with a simple design and much higher power than tubes with a flat anode. The basic technical idea underlying the design of the tube is to create a continuous high power X ray flux diverging from a small area. X rays are generated in the process of reflection and absorption of pre-accelerated hollow cylindrical electron stream by the walls of the channel. Chanel is performed as a funnel in the massive anode. CAE «FOCUS» is developing in the present work for the effective solution of problems of electron-optical systems (EOS) numerical modeling. CAE «FOCUS» allowed us to develop and optimize the electron-optical scheme of the x ray tube in the shortest time. The tube produses the hollow and accelerated electron flow with diameter d, which is parallel to the axis of symmetry at the entrance to funnel channel. X ray radiation of high power is generated in the channel. 3D-model of the microfocus x ray tube is designed with using the CAD SolidWorks.
Pages: 140-145
References

 

  1.  US Patent 3,584,219. X‑ray Generator Having an Anode Formed by a Solid Block with a Conical Bore Closed by a Target Toil / Hergiotz H.K., Reilly C.D. Patented 8 June 1971.
  2. Pat. RF na poleznuju model № 121648 ot 27.10.2012. Ostrofokusnaja rentgenovskaja trubka / Belskijj D.P., Belskijj P.D., Belskijj V.D., Busarov V.F.
  3. Hemberg O., Otendal M. and Hertz H.M. Liquid-metal-jet anode electron-impact x-ray source // Appl. Phys. Lett. 2003. V. 83. P. 1483−1485.
  4. Zajavka na pat. RF № 2016119904 ot 23.05.2016. Mikrofokusnaja rentgenovskaja trubka / Trubicyn A.A., Grachev E.JU.
  5. Kornjushkin JU.D. Osobennosti obratnogo rassejanija ehlektronov srednikh ehnergijj tverdymi telami s razlichnymi porjadkovymi nomerami // ZHTF. 1999. T. 69. № 6. S. 40−45.
  6. Gurov V., Saulebekov A., Trubitsyn A. Analytical, Approximate-Analytical and Numerical Methods in the Design of Energy Analyzers // In P.W. Hawkes (Ed.). Advances in Imaging and Electron Physics. London: Academic Press. 2015. V. 192. 209 p.
  7. Trubicyn A.A. Programma «Fokus» modelirovanija aksialno-simmetrichnykh ehlektronno-opticheskikh sistem: algoritmy i kharakteristiki // Prikladnaja fizika. 2008. № 2. S. 56−62.
  8. Trubicyn A.A. Sistema «FOKUS» avtomatizirovannogo proektirovanija ustrojjstv ehlektronnojj i ionnojj optiki // Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2012. № 39‑2. S. 121−130.
  9. Grossmann C., Roos Hans-G., Stynes M. Numerical Treatment of Partial Differential Equations. Berlin: Springer-Verlag. 2007. 596 p.
  10. Zienkiewicz O., Taylor R., Zhu J. The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann. 2013. 756 p.
  11. Cheng Alexander H.-D., Cheng D. Heritage and early history of the boundary element method // Engineering Analysis with Boundary Elements. 2005. 29(3). P. 268−302.
  12. Trubitsyn A. Calculation of the Singular Integrals Arising in the Boundary-Element Method for the Dirichlet Problem // Comp. Maths Math. Phys. 1995. 35(4). P. 421−428.
  13. Griffiths D. Introduction to Electrodynamics (3rd ed.). Prentice Hall. 1998. 596 p.
  14. Trubitsyn A. A Correlation Method of Search for Higher-Order Angular Focusing // Technical Physics. 2001. 46(5). P. 630−631.
  15. Skuncev A.A., Trubicyn A.A. CHislennyjj metod poiska uslovijj prostranstvennojj fokusirovki vysshikh porjadkov // Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2009. № 30. S. 40−43.
  16. Trubitsyn A., Astakhov V., Grachev E. The numerical techniques of conditions search of high order time-of-flight focusing // Proceedings of the Eighth International Conference on Charged Particle Optics (CPO‑8). Singapore. 12−16 July 2010. P. 186−187.
  17. Trubitsyn A., Gurov V. Monte Carlo Technique of Simulation of Electron Motion in Gas // Microscopy and Microanalysis. 2015. 21(4). P. 258−263.
  18. http://www.solidworks.com/.