350 rub
Journal Radioengineering №11 for 2016 г.
Article in number:
Planning of network channels bandwidth in polygon measuring complex
Authors:
V.P. Koryachko - Honored Scientist of RF, Dr. Sc. (Eng.), Professor, Head of Department, Ryazan State Radio Engineering University E-mail: koryachko.v.p@rsreu.ru A.P. Shibanov - Dr. Sc. (Eng.), Professor, Ryazan State Radio Engineering University E-mail: apshibanov@yandex.ru A.N. Saprikin - Ph. D. (Eng.), Associate Professor, Ryazan State Radio Engineering University E-mail: alexpizza@rambler.ru X.L. Fam - Post-graduate Student, Ryazan State Radio Engineering University E-mail: hoanglong2410@gmail.com
Abstract:
Questions of network bandwidth scheduling transmission of measurement data during the test aircraft. The frames are transmitted to the control center through the network to the dosage load balancing (VLB-network) with a two-way routing through a smart host. The purpose of research is to provide the necessary solution to the reserves bandwidth channel under dynamic traffic changes transmitted from the measuring systems in real time. Research objectives: for each measurement system need to find a set of shortest paths to the control center, based on the weight of the arc data network graph, which is taken as the average transmission time of the frame through the network link. To calculate the probability of timely delivery of real-time frames for each of these ways is the frame transmission timing; scheduling of traffic channels transmitted over the data network, so that the average value of the reserve bandwidth across the network bandwidth is maximized; determination of the variation of physical channel bandwidth (or the most important of all) to assess the probability of reducing the reserves in bands of physical transmission channels. Delay frame transmission is the sum of the constant component (the propagation time plus the average delay time in queues) and a variable determined by the transmission time deviation from the mean. The variable component of the frame transmission time on the level of care is determined by the density distribution of the normalized second-order Erlang. Determine the generating function of transmission timings of the variable portion of the frame M (s). Converts s = -z and the contour integration Brom received function. Probability density function of the variable part of the transmission time frame determined by the sum of the residues of all singular points of the function by integrating along the contour Brom. Found density used for the planning of bandwidth physical channel bandwidth. Smaller values of the frame in time correspond to large values of the transmission rates. The distribution of the sum of random variables bands virtual channel bandwidth determines the bandwidth reserve physical channel. Planning channel bandwidth is performed using a genetic algorithm. Chromosome described by a set of successive elements, corres-ponding to the nodes following the virtual connection from the departure node to the destination node. Implemented program channel bandwidth scheduling in C #. Considered method can be used for: determining the degree of loading of the physical channels and bandwidth allowance finding the busiest of them; determining the average value of all reserve bandwidth frame Networks plurality of channels; finding the values that need to increase the reserve bandwidth of any channel. Reserve physical channel bandwidth should be used for the following practical problems: processing of random traffic fluctuations; first creating multiple redundant channels in the event of failure occurrence processed without a rerouting in certain «failure scenarios»; implementation of clear feedback to the operation of network protocols and transmission testing commands.
Pages: 103-110
References

 

  1. Valiant L.G. A scheme for fast parallel communication // SIAM Journal on Computing. 1982. V. 11. № 2. P. 350−361.
  2. Wenda N., Changcheng H., Jing W., Michel S. Availability of survivable Valiant load balancing (VLB) networks over optical networks // Optical Switching and Networking. 2013. V. 10. P. 274−289.
  3. Chowdhury R. Boutaba. A survey of network virtualization // Elsevier Computer Networks. 2010. № 54 (5). P. 862−876.
  4. Chiu A.L., et al. Architectures and protocols for capacity efficient, highly dynamic and highly resilient core networks // IEEE/OSA Journal of Optical Communications and Networks. 2012. V. 4. № 1. P. 1−14.
  5. He J., Rexford J., Chiang M. Design for Optimizability: Traffic Management of a Future Internet // Algorithms for Next Generation Networks, Computer Communications and Networks. Springer. 2010. P. 3−18.
  6. Izhvanov JU.L., Korjachko V.P., SHibanov A.P., Saprykin A.N., Lukjanov O.V. Optimizacija seti s dozirovannojj balansirovkojj nagruzki // Sistemy upravlenija i informacionnye tekhnologii. 2012. № 3(49). S. 37−42.
  7. Korjachko V.P., SHibanov A.P., Saprykin A.N. Raschet variacii vremeni peredachi paketov v seti s dvukhfaznojj marshrutizaciejj // XII Vseros. soveshhanie po problemam upravlenija VSPU-2014. Moskva. 16−19 ijunja 2014 g.
  8. SHuvalov V.P., Seljanina I.JU. Metodika obespechenija otkazoustojjchivosti v multiservisnykh setjakh svjazi // Problemy informatiki. 2012. № 2. S. 55−62.
  9. Korjachko V.P., SHibanov A.P., Lukjanov O.V. KHarakteristiki seti peredachi dannykh dlja provedenija letnykh ispytanijj izdelijj // Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2015. № 54−1. S. 98−103.
  10. Shibanov A.P. Finding the distribution density of the time taken to fulifill the GERT network on the basis of equivalent simplifying transformations // Automation and Remote Control. 2003. T. 64. № 2. S. 279−287.
  11. Izhvanov JU.L., Korjachko V.P., SHibanov A.P., Saprykin A.N., Lukjanov O.V. Optimizacija setejj s dozirovannojj balansirovkojj nagruzki i piringovymi kanalami // Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2013. № 43. S. 67−74.
  12. Korjachko V.P., SHibanov A.P., Saprykin A.N., Lukjanov O.V. Planirovanie potokov v seti peredachi dannykh optiko-ehlektronnykh sredstv // Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2014. № 50. S. 55−59.
  13. SHibanov A.P., SHibanov V.A. Vychislenie raspredelenija vykhodnojj velichiny GERT-seti s ehksponencialnymi i ravnomerno raspredelennymi sluchajjnymi velichinami // Pribory i sistemy. Upravlenie, kontrol, diagnostika. 2015. № 7. S. 1−9.
  14. Korjachko V.P., SHibanov A.P., Fam KH.L. Nakhozhdenie kharakteristik kanala peredachi dannykh optiko-ehlektronnykh sredstv // Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2015. № 51. S. 30−34.
  15. SHibanov A.P., SHibanov V.A. Vychislenie raspredelenija diskretnojj vykhodnojj sluchajjnojj velichiny GERT-seti // Sistemy upravlenija i informacionnye tekhnologii. 2016. T. 63. № 1. S. 86−91.