350 rub
Journal Radioengineering №10 for 2016 г.
Article in number:
A model of the impulse response оf the HF channel communication and quasioptimal algorithm of its estimation
Authors:
V.S. Revin - Post-graduate Student, Department of Transmitting and receiving radio-device, MESC «Zhukovsky-Gagarin Air Force Academy» (Voronezh) E-mail: vadimrevin@bk.ru A.V. Korennoy - Honored Scientist of RF, Dr. Sc. (Eng.), Professor, MESC «Zhukovsky-Gagarin Air Force Academy» (Voronezh) E-mail: korennoj@mail.ru A.M. Mezhuev - Ph. D. (Eng.), Associate Professor, Head of Department of Communication facilities, MESC «Zhukovsky-Gagarin Air Force Academy» (Voronezh) E-mail: multitenzor@mail.ru
Abstract:
In paper presents a model of the impulse response оf the HF channel communication with the identification of multipath components, adequately reflects the multipath properties of real HF channels. With the use of non-conventional unit optimal filtering methods of mutually delayed Markovian processes in the Gaussian approximation algorithm of estimating quadrature components of the impulse response of the HF channel. The main idea of the proposed method lies in the fact that at any given time does not evaluate individual of mutually delayed Markovian process and its full implementation in the observation interval. Such an implementation can be obtained at the outputs of the delay line with distributed parameters, the input of which affects a Markovian random process. All information about the process being evaluated at each time contained in the functional posteriori probability density. This functionality satisfies the integro-differential equation in variational derivatives, which is an analogue of the well-known equation Stratonovich. The solution of this equation in the Gaussian approximation is reduced to finding the posterior mean and correlation functions of filtering errors. Confirmation of performance of the algorithm is a «convergence» of the statistical filtering error variance quadrature components of the impulse response to the theoretical dispersion. A feature of the algorithm is the simultaneous production of current and interpola-tion estimates that are more accurate.
Pages: 171-177
References

 

  1. Dolukhanov M.P. Rasprostranenie radiovoln. M: Svjaz. 1972. 336 c.
  2. Ershov L.A., Korennojj A.V., SHelkovnikov M.A. Markovskaja model dekametrovogo kanala svjazi // Radiotekhnika. 1998. № 3. № 28. S. 57−60.
  3. Tikhonov V.I. Nelinejjnye preobrazovanija sluchajjnykh processov. M.: Radio i svjaz. 1986. 295 s.
  4. Dolukhanov M.P. Fluktuacionnye processy pri rasprostranenii radiovoln. M.: Svjaz. 1971. 183 s.
  5. Batenkov K.A. Matematicheskoe modelirovanie nepreryvnykh mnogoparametricheskikh kanalov svjazi v operatornojj forme // Telekommunikacii. 2013. № 10. S. 2−4.
  6. Recommendation ITU-R F.1487 (05/2000). Testing of HF modems with bandwidths of up to about 12 kHz using ionospheric channel simulators. ITU. 2000. P. 2−13.
  7. Recommendation ITU-R P. 1407-5 (09/2013). Multipath propagation and parameterization of its characteristics. ITU. 2013. P. 6−23.
  8. Ershov L.A., Korennojj A.V. Kvazioptimalnye algoritmy filtracii vzaimozaderzhannykh markovskikh processov // Radiotekhnika. 1994. № 10. S. 83−87.
  9. Tikhonov V.I., Mironov M.A. Markovskie processy. M.: Radio i svjaz. 1977. 488 s.
  10. SHmelev A.B. Osnovy markovskojj teorii nelinejjnojj obrabotki sluchajjnykh polejj. M.: Izd-vo MFTI. 1998. 208 s.
  11. Korennojj A.V., Mezhuev A.M., Revin V.S. K voprosu chislennogo metoda reshenija uravnenijj korreljacionnojj funkcii oshibok filtracii // Vestnik VI FSIN (Voronezh). 2015. № 3. S. 10−15.
  12. Tikhonov V.I., KHarisov V.N. Statisticheskijj analiz i sintez radiotekhnicheskikh ustrojjstv i sistem. M.: Radio i svjaz. 1991. 608 s.