350 rub
Journal Radioengineering №10 for 2016 г.
Article in number:
Electromagnetic compatibility of satellite radionavigation systems and networks of pseudo-satellites
Authors:
A.V. Korovin - Ph. D. (Eng.), Associate Professor, MESC «Zhukovsky-Gagarin Air Force Academy» (Voronezh) E-mail: korovin.alexey@mail.ru V.A. Mironov - Dr. Sc. (Eng.), Professor, Main Research Scientist, MESC «Zhukovsky-Gagarin Air Force Academy» (Voronezh) E-mail: mirvam@live.ru V.A. Zemlyanukhin - Deputy Head of Department, MESC «Zhukovsky-Gagarin Air Force Academy» (Voronezh) E-mail: carlos-80@yandex.ru
Abstract:
The analysis of congestion of an electromagnetic spectrum in a range of satellite navigation systems (SNS) frequencies is carried out, is shown that the range of frequencies allocated for systems of satellite navigation, is strongly enough loaded, and the majority of offered decisions of systems with pseudo-satellites assume use of already available types of navigating signals. The technique of definition of electromagnetic compatibility of satellite radionavigation systems and networks of the pseudo-satellites, considering joint influence of various sources of stirring signals on navigation equipment users (NEU) SNS is developed, zones of electromagnetic compatibility for various cases of application of pseudo-satellites and characteristics NEU are constructed. Researches of electromagnetic compatibility SNS and systems of pseudo-satellites for various spatial and power parametres of radio beacons. It is shown that the increase in capacity of a network of pseudo-satellites with a view of improvement of noise stability NEU leads to opposite result. It is necessary to take additional measures for reception of noise stability navigating equipment, for example, to use the additional aerial for reception of signals of pseudo- satellites, or to use standard methods of electromagnetic compatibility, such as frequency spacing, etc.
Pages: 159-164
References

 

  1. GLONASS. Principy postroenija i funkcionirovanija / Pod red. A.I. Perova, V.N. KHarisova, M.:Radiotekhnika. 2005.
  2. Mohinder S. Grewal, Lawernce R. Weill, Angus P.GlobalPositioningSystems, InertialNavigation, andIntegration. Andrews: 2001. JohnWiley & Sons, Inc.
  3.  Lee K., Noh H, Lim J.Airbornerelay-basedregionalpositioningsystemaDepartmentofComputerEngineering // Sensors (Switzerland) V. 15. Issue6. 28 May 2015. P. 12682−12699. AjouUniversity, 206 Worldcupro, Yeongtong-guSuwon, SouthKoreabCommunicationResearchCenter, LIGNex1, 333 Pangyo-ro, BundangguSeongnam, SouthKorea.
  4. Fieldtestresultsofaflexiblepseudolitebasednavigationsystem (2006) // ProceedingsoftheInstituteofNavigation. 19thInternationalTechnicalMeetingoftheSatelliteDivision, IONGNSS 2006. 1. P. 102−113.
  5. Mironov V.A., Korovin A.V., Nerovnyjj V.V. Osnovnye problemy i napravlenija razvitija sistem sputnikovojj radionavigacii // Materialy 19-jj Mezhdunar. nauchno-tekhnich. konf. «Radiolokacija, navigacija, svjaz». Voronezh: VGU. 2013. S. 1841−1849.
  6. Perov A.I., Boldenkov E.N., Grigorenko D.A. Uproshhennaja analiticheskaja metodika ocenki potencialnojj pomekhoustojjchivosti optimalnykh sledjashhikh sistem priemnikov sputnikovojj navigacii // Radiotekhnika. 2003. № 7. S. 78−87.
  7. Avdeev M.V., ZHuravlev A.V., Korovin A.V., Nerovnyjj V.V. Povyshenie pomekhozashhishhennosti navigacionnojj apparatury potrebitelejj sputnikovykh radionavigacionnykh sistem za schet sovmestnojj obrabotki razlichnogo tipa navigacionnykh signalov // Sb. trudov XIV Mezhdunar. nauchno-tekhnich. konf. «Radiolokacija, navigacija, svjaz». Voronezh: VGU. 2010. S. 1583−1589.