350 rub
Journal Radioengineering №10 for 2016 г.
Article in number:
Improving of active phased array performances by output power control of transmit-receive modules
Authors:
V.S. Berdyev - Ph. D. (Eng.), Head of Department, PJSC «Radiofizika» (Moscow); Lecturer, Department of Radiophysics and Engineering Cybernetics, Moscow Institute of Physics and Technology (State University) B.A. Levitan - Ph. D. (Eng.), General Director, PJSC «Radiofizika» (Moscow); Head of Department of Radiophysics and Engineering Cybernetics, Moscow Institute of Physics and Technology (State University) P.A. Tushnov - Main Technologist, PJSC «Radiofizika» (Moscow); Lecturer, Moscow Aviation Institute (National Research University) A.V. Shishlov - Ph. D. (Eng.), Head of Department, PJSC «Radiofizika» (Moscow); Deputy Head of Department of Radiophysics and Engineering Cybernetics, Moscow Institute of Physics and Technology (State University)
Abstract:
Development of advanced transmit-receive modules (TRM) with not only phase control but also output power control is a valuable step in perfection of active electronically scanning antennas (AESA). This control makes it possible to increase capabilities and efficiency of radioelectronic systems with AESA [1−2]. JSC «Radiofizika» intensively develops TRMs using innovative technologies [3−15]. The factory for mass production, tuning and test of TRMs is created [30]. The TRMs with amplitude and output power control are required for both directly radiated AESAs and array-fed reflector antennas. Power control in array channels is key property of TRMs providing high performances of the latter antennas [16−20]. There are many approaches to output power control and improvement of power efficiency of amplifiers [21−26]. Recently, TRMs with output power control were designed in JSC «Radiofizika» [27−29]. The power control is implemented with help of controllable power supply chips. In saturation mode the GaN power amplifiers have high efficiency of about 70%. Total power efficiency of the whole TRM is about 40% with power variation in the range over 10 dB. The proposed technology of TRM with output power control has the following advantages: forming of amplitude and phase distributions over channels of AESA with high power efficiency of amplifiers; decreasing of output power tolerances in array channels due to power calibration. Several options of power calibration for basic TRMs and appropriate positive results for AESAs are considered in the paper. Using ap-proaches [31, 32] it is shown that selecting a level of power calibration it is possible to simplify cooling and power supply systems or increase reliability of AESA or increase its radiated power. Estimations made with help of [33−37] show achievable improvement of AESA-s radiation performances due to power control in array channels. Simulation of array-fed reflector antenna [16−20, 39, 40] con-firms advantages of power control in channels for the antenna performances.
Pages: 88-99
References

 

  1. Gostjukhin V.L., Trusov V.N., Gostjukhin A.V. Aktivnye fazirovannye antennye reshetki. M.: Radiotekhnika. 2011.
  2. Aktivnye fazirovannye antennye reshetki. Pod redakciejj D.I. Voskresenskogo, A.I. Kanashhenkova. M.: Radiotekhnika.  2004.
  3. Pat. RF № 106070. Mnogoslojjnaja pechatnaja plata, uzel germetichnogo vvoda, korpus radioehlektronnogo ustrojjstva, nabor dlja ego izgotovlenija i radioehlektronnoe ustrojjstvo, soderzhashhee ee / Ganin S.A., Dominjuk JA.V., Levitan B.A., Molchanov E.G., Moroz V.B., Muradjan SH.A., Ochkov D.S., Plaksin G.A., Radchenko V.P., Sudarenko A.A., Topchiev S.A., Tushnov P.A., Formalnov I.S., SHishlov A.V., JArchak I.A.
  4. Pat. RF № 128791. Priemoperedajushhijj modul aktivnojj fazirovannojj antennojj reshetki / Berdyev V.S., Dominjuk JA.V., Levitan B.A., Molchanov E.G., Ochkov D.S., Radchenko V.P., Sudarenko A.A., Topchiev S.A., Tushnov P.A., Formalnov I.S., JArchak I.A., SHarov A.I., Tereshhenko JU.G.
  5. Pat. RF № 2576666. Sposob montazha moshhnogo poluprovodnikovogo ehlementa / Levitan B.A., Kuzin A.A., Topchiev S.A., Radchenko V.P., Dominjuk JA.V., Tushnov P.A., Berdyev V.S., Koljushev A.V., Mitrofanov M.M., Kostin D.JU., Astafev A.A.
  6. Pat. RF № 2562440. Priemo-peredajushhijj modul / Dominjuk JA.V., Levitan B.A., Topchiev S.A., Tushnov P.A.
  7. Pat. RF № 154186. Radioehlektronnoe ustrojjstvo / Tushnov P.A.
  8. Pat. RF № 2566328. SVCH-modul / Tushnov P.A.
  9. Pat. RF № 2566601. Priemo-peredajushhijj SVCH-modul / Berdyev V.S., Dominjuk JA.V., Levitan B.A., Mitrofanov M.M., Radchenko V.P., Tokmakov D.I., Topchiev S.A., Tushnov P.A.
  10. Pat. RF № 157898. Priemoperedajushhijj SVCH-modul AFAR / Tushnov P.A., Dominjuk JA.V., Berdyev V.S., Mitrofanov M.M.
  11. Pat. RF № 2576497. Radioehlektronnyjj SVCH-modul / Tushnov P.A.
  12. Pat. RF № 2584006. Usilitelnyjj blok / Tushnov P.A.
  13. Pat. RF № 2556863. Korpus radioehlektronnogo ustrojjstva (varianty) / Aljokhin N.N., Ampilov O.V., Berdyev V.S., Vencenoscev D.L., Dominjuk JA.V., Karimov JA.SH., Levitan B.A., Radchenko V.P., Topchiev S.A., Tushnov P.A.
  14. Pat. RF № 2564152. Sposob okhlazhdenija aktivnojj fazirovannojj antennojj reshetki / Vencenoscev D.L., Levitan B.A., Radchenko V.P., Smolin M.G., Tokmakov D.I., Topchiev S.A., Tushnov P.A.
  15. Pat. RF № 164624. Radioehlektronnoe ustrojjstvo / Tushnov P.A. Mikhajjlova M.L.
  16. Vilenko I.L., Krivosheev JU.V., SHishlov A.V. Gibridnye zerkalnye antenny s obluchajushhimi aktivnymi fazirovannymi reshetkami // Antenny. 2011. № 10. S. 22−42.
  17. Shishlov A.V., Vilenko I.L., Krivosheev Yu.V. Active Array-Fed Reflector Antennas. Practical Relations and Efficiency // Proceedings of the 6-th European Conference on Antennas and Propagation. Prague. 2012. P. 2362−2366.
  18. Shishlov A.V., Vilenko I.L., Krivosheev Y.V. Asymptotic theory, design and efficiency of array-fed reflector antennas // Proceedings of the 2013 IEEE International Symposium on Phased Array Systems and Technology. Boston-Waltham. 2013. P. 320−327.
  19. Savosin G.V., Serjapin A.V., SHilo V.K., Vilenko I.L., Tobolev A.K., SHishlov A.V., Egorov M.A., Korolev A.V., Neronskijj L.B., SHipilov G.V. - Krupnogabaritnye gibridnye zerkalnye antenny s obluchateljami v vide aktivnykh fazirovannykh antennykh reshetok // V sb. «Reshetnevskie chtenija». Krasnojarsk. 2007. S. 166−167.
  20. Reutov A.S., Shishlov A.V. «Focuser-Based Hybrid Antennas For One-Dimensional Beam Steering» // Proceedings of the 2000 IEEE International Conference on Phased Array Systems and Technology, Dana Point. California 2000. P. 411−414.
  21. Berdyev B.C., Petrov B.E. Vlijanie vysshikh garmonik. na ehnergeticheskie kharakteristiki tranzistornykh SVCH-usilitelejj // Sb. nauchnykh trudov po problemam mikroehlektroniki. M.: MIEHT. 1976. № 25. S. 103−106.
  22. Berdyev B.C. Sposob uvelichenija KPD tranzistornogo usilitelja moshhnosti UKV diapazona // EHlektronnaja tekhnika. Ser. Mikroehlektronnye ustrojjstva. 1978. № 6(12). S. 41−6.
  23. Berdyev V.S. Upravlenie rezhimom tranzistornogo usilitelja moshhnosti // EHlektronnaja tekhnika. Ser. Mikroehlektronnye ustrojjstva. 1988. № 2(68). S. 9−13.
  24. Saleh A.A., Cox D.C. Improving the Power Added Efficiency of FET Amplifiers Operating with Varying-Envelope Signals // IEEE Transactions on Microwave Theory and Techniques. V. 31. P. 51−56. 1983.
  25. www.terraelectronica.ru/images/notes/EK2010_03_2.pdf.
  26. www.elcp.ru.
  27. Tushnov P.A., Berdyev V.S., Levitan B.A. Aspekty razvitija tekhnologijj priemoperedajushhikh modulejj aktivnykh fazirovannykh reshetok // Radiotekhnika. 2015. № 4. S. 91−98.
  28. Tushnov P.A., Berdyev V.S. Tekhnologija upravlenija vykhodnojj moshhnostju priemoperedajushhego modulja AFAR // Radiotekhnika. 2015. № 10. S. 62−74.
  29. Tushnov P.A., Berdyev V.S. Tekhnologii obespechenija ehffektivnosti priemoperedajushhikh modulejj AFAR, rabotajushhikh v impulsnom rezhime // Radiotekhnika. 2016. № 4. S. 29−44.
  30. Tushnov P.A. Tekhnologicheskaja rekonstrukcija dlja sozdanija novogo pokolenija RLS s AFAR // V kn. «Tekhnologii radiolokacii. K 55-letiju PAO «Radiofizika». M. Veche. 2015. S. 494−511.
  31. Korolev A.V., Kushnerev N.A., Kostjuchik D.A., Rodin M.V. Opyt razrabotki moshhnogo peredajushhego modulja AFAR R‑diapazona s dinamicheskim upravleniem naprjazhenija pitanija dlja BRLS // Uspekhi sovremennojj radioehlektroniki. 2015. № 5. S. 43−49.
  32. Gorjunov N.N. Svojjstva poluprovodnikovykh priborov pri dlitelnojj rabote i khranenii. M.: EHnergija. 1970. 102 s.
  33. Egorov E.N. Osnovy mikroehlektroniki SVCH: Ucheb. posobie po kursam «Antenno-fidernye ustrojjstva» i «Radiotekhnicheskie ustrojjstva i sistemy» (chast II). M.: Izd-vo MIEHT.1983. 103 s.
  34. Mailloux R.J. Phased Array Antenna Handbook. Second Edition. Artech House, Boston-London. 2005.
  35. Nansen R.C. Phased Array Antennas // Wiley Series in Microwave and Optical Engineering. 1998.
  36. Vendik O.G., Parnes M.D. Antenny s ehlektricheskim skanirovaniem. M.: Sajjns-Press. 2002.
  37. Samojjlenko V.I., SHishov JU.A. Upravlenie fazirovannymi antennymi reshetkami. M.: Radio i svjaz. 1983. 240 s.
  38. Kondratev A.S., Balagurovskijj V.A., Manichev A.O. Metody fazovogo inteza nulejj v diagramme napravlennosti fazirovannojj antennojj reshetki pri nalichii sluchajjnykh pogreshnostejj iskhodnykh dannykh i oshibok upravlenija amplitudno-fazovym raspredeleniem // Trudy 4-jj Vseros. konf. «Radiolokacija i radiosvjaz». IREH RAN. 2010. S. 556−561.
  39. Kinber B.E., Azjukin A.V., Vilenko I.L., SHishlov A.V. CHislennye raschety diagramm zerkalnykh antenn. Metod Filona; preimushhestva i granicy primenimosti. Voprosy difrakcii i rasprostranenija radiovoln. M.: MFTI. 1991.
  40. Bomshtejjn JU.A., Vilenko I.L., SHishlov A.V., SHitikov A.M. Paket prikladnykh programm dlja rascheta DN odno- i dvukhzerkalnykh antenn, v tom chisle antenn s mnogoluchevymi i konturnymi DN // Sb. trudov III Mezhdunar. nauchno-tekhnich. konf. «Antenno-fidernye ustrojjstva, sistemy i sredstva radiosvjazi». Voronezh. 1997. T. 1. S. 220−231.