350 rub
Journal Radioengineering №1 for 2016 г.
Article in number:
The design of aperture antennas with frequency independent radiation characteristics
Authors:
N.I. Bobkov - Ph. D. (Eng.), Head of Research Sector, JSC «VNII «Gradient» (Rostov-on-Don). E-mail: ua6lac@mail.ru D.D. Gabrielyan - Dr. Sc. (Eng.), Professor, Deputy Commander of Scientific and Technical Complex, Rostov-on-Don Research Institute of Radiocommunication. E-mail: S.S. Ivakina - Part-programming Engineer, JSC «VNII «Gradient» (Rostov-on-Don). E-mail: gradient@aaanet.ru N.G. Parkhomenko - Ph. D. (Eng.), Associate Professor, First Deputy General Director, JSC «VNII «Gradient» (Rostov-on-Don). E-mail: gradient@aaanet.ru
Abstract:
The relevance of ultra-wideband antenna systems development, which radiation patterns maintain their parameters in a wide frequency range, caused by the tendency of continuous expansion of operating frequency range for modern radioelectronic systems and application of ultra-wideband signals by them. Among frequency independent antennas such properties are possessed, for example, by log-periodic or spiral antennas, but they have a low directivity and a low gain, that limits their application. Widely used in highly sensitive radioelectronic systems highly directional aperture antennas (horn, lens, reflector) and antenna arrays have expressed dependence of radiation pattern parameters from frequency. Aperture antenna radiation pattern parameters are uniquely determined by the amplitude-phase distribution of the field in the aperture. Thus, the most narrow radiation patterns formed when equal- amplitude common mode aperture excitation takes place. When falling amplitude distribution administered or aperture dephasing occurs, aperture antenna radiation pattern expansion takes place. Making use of this, we can compensate the radiation pattern parameters frequency dependence by forming such frequency dependent amplitude-phase distribution, in which the radiation pattern parameters will remain practically the same or changed within allowable limits in the bandwidth of a few octaves. Radiation pattern stabilization methods for the various types of aperture antennas may be divided as amplitude, phase and amplitude-phase. Amplitude methods are implemented at a constant phase distribution by forming a frequency dependent amplitude distribution, in which a change in frequency remains the equivalent size of aperture in wavelengths constant. Phase methods are characterized by frequency dependent phase field distribution in aperture at a constant amplitude distribution. Amplitude-phase methods lead to frequency stabilization of radiation pattern parameters with a simultaneous change from frequency of amplitude and phase field distributions in aperture. In the article the design features of aperture antennas with phase stabilization of radiation pattern parameters are considered. For linear multibeam antenna array (MAA) calculation was performed for the array factor with the cosine amplitude distributions with pedestal Δ. Simulation results confirm the possibility of MAA radiation pattern stabilization with different, depending on the amplitude distribution, accuracy of radiation pattern width maintain in the frequency band with the overlap 10:1 and more. Considered methods of construction aperture antennas with frequency independent radiation characteristics can be used in the practice of broadband antenna systems development for advanced radioelectronic systems of various purposes.
Pages: 42-48
References

 

  1. Gillard C., Franks R. Frequency independent antenna - several new and undeveloped ideas // Microwave J. February 1961. P. 67−72.
  2. Walton K.L., Sundberg V.C. Constant-Beamwidht Antenna Development // IEEE Trans. 1968. V. AP-16. № 5. P. 510−513.
  3. Patent 2234774 (RU). Mnogoluchevaja zerkalnaja antenna / Savelenko A.A., Kurnosenko V.N., Nartov S.V., Lopatko N.P., Sturov A.G. Bjulleten izobretenijj № 23. 20.08.2004. MPK H01Q 15/14.
  4. Baskov K.M., Bobkov N.I., Krasnolobov I.I., Semenenko V.N. Matematicheskoe modelirovanie sverkhshirokopolosnojj mnogoluchevojj zerkalnojj antenny // ZHurnal radioehlektroniki (ehlektronnyjj zhurnal). 2013. № 4. URL: http: // jre. cplire.ru/ jre/apr13/9/text.pdf.
  5. Patent 2451871 (RU). Sverkhshirokopolosnaja mnogoluchevaja zerkalnaja antenna / Bobkov N.I., Gabriehljan D.D., Parkhomenko N.G., Semenenko V.N. Bjulleten izobretenijj № 3. 16.01.2015. MPK H01Q 15/14.
  6. Markov G.T., Sazonov D.M. Antenny. M.: EHnergija. 1975. 529 s.
  7. Wheeler H.A. Antenna beam pattern which retain shape with defocusing // IRE Trans. AntennasPropogation. 1962. V. 10. P. 573−580.
  8. Drozhzhina N.V., SHurygina I.S. Upravlenie shirinojj lucha aktivnojj fazirovannojj antennojj reshetki putem zadanija specialnykh amplitudno-fazovykh raspredelenijj // Sb. dokladov IIIVseros. konf. «EHlektronika i mikroehlektronika SVCH». Sankt-Peterburg. 2−5 ijunja 2014 g. S. 499−502.
  9. Ajjzenberg G.Z. Antenny UKV. M.: Svjazizdat. 1957. 698 s.
  10. Gorin A.M., Radchenko N.A. SHirokopolosnye mnogoluchevye antennye sistemy dlja monitoringa // Sb. dokladov Mezhdunar. nauchnojj konf. «IREHMV-2013». Taganrog-Divnomorskoe. 24−28 ijunja 2013. S. 209−212.
  11. Bobkov N.I., SHHerbachev V.A. Sverkhshirokopolosnaja pelengacionnaja rupornaja antenna // Sb. dokladov IIVseros. Mikrovolnovojj konf. Moskva. 26−28 nojabrja 2014. S. 122−126.
  12. Gorin A.M., Radchenko N.A. Skanirujushhaja antennaja reshetka so stabilnojj diagrammojj napravlennosti v shirokom diapazone chastot // Voprosy specialnojj radioehlektroniki (nauchno-tekhnich. sb.). OVR. № 1. Moskva-Taganrog. 2014. S. 77−80.
  13. Bobkov N.I., Gabriehljan D.D., Prozhivalskijj V.V. Stabilizacija diagramm napravlennosti antenn v polose chastot // Sb. dokladov IVseros. Mikrovolnovojj konf. Moskva. 27−29 nojabrja 2013. S. 334−338.