350 rub
Journal Radioengineering №9 for 2015 г.
Article in number:
Improving BER performance of uplink LTE by using turbo equalizer
Authors:
A.L. Gelgor - Ph. D. (Eng.), Associate Professor, Department «Radioelectronic Means of Information Protection», Peter The Great St.Petersburg Polytechnic University. E-mail: a_gelgor@mail A.I. Gorlov - Assistant, Department «Radioelectronic Means of Information Protection», Peter The Great St.Petersburg Polytechnic University. E-mail: anton.gorlov@yandex.ru P.V. Ivanov - Ph. D. (Eng.), д. по НИР, CJSC «New Wireless Technology» (Moscow). E-mail: ivanov@sbtcom.ru! E.A. Popov - Ph. D. (Eng.), Associate Professor, Department «Radioelectronic Means of Information Protection», Peter The Great St.Petersburg Polytechnic University. E-mail: eugapop@gmail.com A.V. Arkhipkin - Ph. D. (Eng.), General Product Engineer, CJSC «New Wireless Technology» (Moscow). E-mail: ava@sbtcom.ru T.E. Gelgor - Assistant, Department «Radioelectronic Means of Information Protection», Peter The Great St.Petersburg Polytechnic University. E-mail: tanya.gelgor@yandex.ru
Abstract:
The potential of turbo-equalization technique applied to uplink (UL) LTE signals detection is analyzed in this paper. The turbo equalizer, which is also called iterative receiver, represents a popular approach for detection of signals passed through a fading channel. The receiver performs equalization and decoding of error-correcting code in a loop. For implementation of the iterative receiver we per-formed two frequency-domain equalizers: approximate MMSE SISO-equalizer and soft interference canceller (SIC) SISO-equalizer. During simulation we analyzed several configurations of UL LTE with QPSK, 16 QAM, 64 QAM signal constellations and allocation of 25 and 100 resource blocks. All considered modes used rate 2/3 parallel concatenated convolutional code and single input single output antennas pattern. Bit error rate (BER) performance was estimated during the simulation with extended vehicular A (EVA) model of multipath fading channel.
Pages: 39-50
References

 

  1. Proakis J., Salehi M. Digital Communications. 5th ed. New York: McGraw-Hill. 2008.
  2. Gelgor A.L., Popov E.A. Tekhnologija LTE mobilnojj peredachi dannykh. SPb: Izd-vo Politekhn. un‑ta. 2011. 204 s.
  3. Myung H.G., Goodman D. Single Carrier FDMA: a new air interface for long term evolution. Chichester: John Willey & Sons Ltd., 2008.
  4. Douillard C, Jezequel M., Berrou C. Iterative correction of intersymbol interference: Turbo equalization // Eur. Trans. Telecommun. 1995. V. 6. № 5. P. 507−511.
  5. Shannon C.E. A mathematical theory of communication // The Bell System Technical Journal. 1948. V. 27. P. 379−423.
  6. Viterbi A.J. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm // IEEE Trans. Inform. Theory. 1967. V. IT‑13. P. 260−269.
  7. Bahl L., Cocke J., Jelinek F., Raviv J. Optimal decoding of linear codes for minimizing symbol error rate // IEEE Trans. Inf. Theory. 1974. V. IT‑20. P. 284−287.
  8. Berrou C., Glavieux A., Thitimajshima P. Near Shannon limit error-correcting coding: Turbo codes // Proc. IEEEInt. Conf. Commun. 1993. P. 1064−1070.
  9. Benedetto S., Montorsi G., Divsalar D., Pollara F. Serial concatenation of intereleaved codes: Performance analysis, design and iterative decoding // TDA Progr. Rep. 42‑126. JetPropulsionLab., Pasadena. CA. 1996. P. 1−26.
  10. Benedetto S., Divsalar D., Montorsi G., Pollara F. Serial concatenation of intereleaved codes: Performance analysis, design and iterative decoding // IEEE Trans. Inform. Theory. 1998. V. 44. P. 909−926.
  11. Hagenauer J., Hoeher P. A Viterbi algorithm with soft-decision outputs and its applications // Proc. IEEEGLOBECOM. 1989. P. 47.1.1−47.1.7.
  12. Tüchler M., Koetter R., Singer A. Turbo equalization: principles and new results // IEEE Trans. Commun. 2002. V. 50. № 5. P. 754−767.
  13. Tüchler M., Singer A., Koetter R. Minimum mean squared error equalization using a priori information // IEEE Trans. SignalProcess. 2002. V. 50. № 3. P. 673−683.
  14. Glavieux A., Laot C., Labat J. Turbo equalization over a frequency selective channel // Proc. Int. Symp. TurboCodesRelatedTopics. 1997. P. 96−102.
  15. Raphaeli D., Saguy A. Linear equalizers for turbo equalization: A new optimization criterion for determining the equalizer taps // Proc. Int. Symp. TurboCodesRelatedTopics. 2000. P. 371−374.
  16. Trajkovic V.D. Novel Exact Low Complexity MMSE Turbo Equalization // IEEE 19th Int. Symp. Personal, IndoorandMobileRadioCommun. 2008. P. 1−5.
  17. Ampeliotis D., Berberidis K. A linear complexity turbo equalizer based on a modified soft interference canceller // IEEE 7th WS Signal Proc. AdvancesinWirelessCommun. 2006. P. 1−5.
  18. Benvenuto N., Tomasin S. On the comparison between OFDM and single-carrier modulation with a DFE using a frequency-domain feed forward filter // IEEE Trans. Commun. 2002. V. 50. № 6. P. 947−955.
  19. Huang G., Nix A., Armour S.Decision feedback equalization in SC‑FDMA // IEEE 19th Int. Symp. Personal, IndoorandMobileRadioCommun. 2008. P. 1−5.
  20. Qiucai Wang, Chaowei Yuan, Jinbo Zhang, Yingxue Li A robust low complexity frequency domain iterative block DFE for SC‑FDMA system // IEEE Int. Conf. onCommun. 2013. 5042−5046.
  21. Tuchler M., Singer A.C. Turbo equalization: an overview // IEEE Trans. Inf. Theory. 2011. V. 57. № 2. P. 920−952.
  22. Bo Wu, Kai Niu, Ping Gong, Shaohui Sun An improved MMSE turbo equalization algorithm in frequency domain // IEEE 14th Int. Conf. Commun. Technology (ICCT). 2012. P. 444−448.
  23. Jar M., Bouton E., Schlegel C. Frequency domain iterative equalization for Single-Carrier FDMA // IEEE 12th Int. WSSignalProc. AdvancesinWirelessCommun. 2011. P. 301−305.
  24. 3GPP TS 36.211 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E‑UTRA); Physical Channels and Modulation.
  25. 3GPP TS 36.212 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E‑UTRA); Multiplexing and channel coding.
  26. Sherman J., Morrison W. Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix // Annals of Mathematical Statistics. 1950. V. 21. № 1. P. 124−127.