350 rub
Journal Radioengineering №8 for 2015 г.
Article in number:
Noise performance of digital communication system based on continuously noise signals with spectrum modulation
Authors:
V.I. Kalinin - Ph. D. (Phys.-Math.), Senior Research Scientist, Head of Laboratory, Frayzino branch of Kotel\'nikov IRE of RAS. E-mail: val.kalinin@mail.ru D.E. Radchenko - Post-graduate Student, Research Scientist, Frayzino branch of Kotel\'nikov IRE of RAS. E-mail: dm.radchenko@gmail.com V.A. Cherepenin - Corresponding Member of RAS, Dr. Sc. (Phys.-Math.), Professor, Deputy Director Kotel\'nikov IRE of RAS (Moscow). E-mail: cher@cplire.ru
Abstract:
Ultra-wideband (UWB) noise communication system based on spread spectrum and transmitted reference technique is proposed for wireless personal area networks. Communication system uses Gaussian noise continuously waveforms with uniformly power spectrum over frequency range 3,1-4,1 GHz. Binary data are inserted into white noise carrier in result of code spectrum modulation. Message noise signal is delayed at different time intervals according to bits flow. The noise reference is summed with delayed message noise signals. Summed noise signals are sent into jamming channel subjected to additive Gaussian white noise (AGWN). Double spectrum processing of received noise signals is performed in the receiver. Correlation outputs content informative pulses at delay times according to bits flow. Definitive reconstruction of transmitted data is performed at the expense of a comparison of informative correlation pulses at fixed delay shifts. Noise performance of UWB communication system are investigated for single-ray AGWN channel. Statistical characteristics of received noise signals with spectrum modulation are analyzed. The new process of inherent jamming reduction is proposed when spectrum modulation is effected using no multiple-time delays of noise informative signals. Numerical simulation of UWB digital communication system confirms the possibility of data transmission with rate 1-2 Mb/s. By using band-limited noise waveforms with large processing gain, probability of error 10−5 is achieved and noise communication system can operate when the signal-to-noise ratio (SNR) at receiver antenna output is negative value.
Pages: 84-94
References

 

  1. Holmes J.K. Coherent Spread Spectrum Systems. Wiley. NewYork. 1982.
  2. Sklar B. Digital Communications: Fundamentals and Applications. 2ndedition. Prentice-Hall. 2001.
  3. Guljaev JU.V., Beljaev R.V.i dr. Informacionnye tekhnologii na osnove dinamicheskogo khaosa dlja peredachi, obrabotki, khranenija i zashhity informacii // Radiotekhnika i ehlektronika. 2003. T. 48. № 10. S. 1157−1185.
  4. Beljaev R.V., Kalinin V.I., Kolesov V.V. Formirovanie shumopodobnojj nesushhejj v sistemakh svjazi s rasshireniem spektra // Radiotekhnika i ehlektronika. 2001. T. 46. № 2. S. 214−223.
  5. Nazarov L.E., SHishkin P.V. Algoritmy nekogerentnogo priema signalno-kodovykh konstrukcijj na osnove blokovykh turbokodov // ZHurnal Radioehlektroniki. 2012. № 7. http://jre.cplire.ru/iso/jul12/2/text.pdf.
  6. Rushforth C.K. Transmitted-reference techniques for random or unknown channels // IEEE Trans. Inf. Theory. 1964. № 10(1). P. 39−42.
  7. Semenov A.M., Sikarev A.A. SHirokopolosnaja radiosvjaz. M.: Voenizdat. 1970.
  8. Kalinin V.I. Spektralnaja moduljacija shirokopolosnykh shumovykh signalov // Radiotekhnika i ehlektronika. 1996. T. 41. № 4. S. 488−493.
  9. Kalinin V.I. Sverkhshirokopolosnaja peredacha informacii s dvojjnojj spektralnojj obrabotkojj shumovykh signalov // Pisma v ZHTF. 2005. T. 31. № 21. S. 58−63.
  10. Kalinin V.I., Radchenko D.E., CHerepenin V.A. CHislennoe modelirovanie shumovojj sistemy peredachi informacii s rasshireniem spektra // ZHurnal Radioehlektroniki. 2014. № 10. http://jre.cplire.ru/jre/oct14/8/text.pdf.
  11. Kalinin V.I., CHapurskijj V.V. Peredacha informacii na osnove shumovykh signalov so spektralnojj moduljaciejj // Radiotekhnika i ehlektronika. 2015. T. 60. № 10.
  12. Narayanan R.M. and Chuang J. Covert communications using heterodyne correlation random noise signals // Electronics Letters. 2007. V. 43. № 22. P. 1211−1212.
  13. Dmitriev A.S., Klecov A.V., Laktjushkin A.M., Panas A.I., Starkov S.O. Sverkhshirokopolosnye kommunikacionnye sistemy na osnove dinamicheskogo khaosa // Uspekhi sovremennojj radioehlektroniki. 2008. № 1. S. 4−16.
  14. Andreev JU.V., Efremova E.V., Lazarev V.A. EHnergosberegajushhie rezhimy priemoperedatchikov v sverkhshirokopolosnykh sensornykh setjakh // ZHurnal Radioehlektroniki. 2012.№ 1.
  15. Mikhail E. Ilchenko, Kalinin V.I., Narytnik T.N., Didkovski R.M. Potential Performance of the Communication Systems Using Autocorrelation Reception of Shift-Keyed Noise Signals // Telecommunications and radio engineering. 2014. V. 73. № 11. P. 955−976.
  16. Kalinin V.I., Radchenko D.E., CHerepenin V.A. Vnutrisistemnye pomekhi pri peredache informacii na osnove SSHP shumovykh signalov // 24-ja Mezhdunar. Krymskaja konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (CriMiCo-2014). Materialy konf. V 2-kh tomakh. Sevastopol: Veber. 2014. T. 1. S. 221−222.
  17. Kolumban G., Kennedy M.P., Chua L.O. The role of synchronization in digital communications using chaos. PartIII: Performanceboundsforcorrelationreceivers // IEEETrans. CircuitsSyst.-I. 2000. V. 47. № 12. P. 1673−1683.
  18. Sushchik M., Tsimring L.S., Volkovskii A.R. Performance Analysis of Correlation-Based Communication Schemes Utilising Chaos // IEEE Transactions on Circuits and Systems-I. 2000. V. 47. № 12. P. 1684−1691.
  19. Bendat J.S., Piersol A.G. Engineering Applications of Correlation and Spectral Analysis. Wiley - Interscience. NewYork.1980. [Imeetsja perevod: Bendat Dzh., Pirsol A. Primenenija korreljacionnogo i spektralnogo analiza. M.: Mir. 1983].
  20. Tikhonov V.I. Statisticheskaja radiotekhnika. M.:Sov. radio. 1966. 677 s.