350 rub
Journal Radioengineering №8 for 2015 г.
Article in number:
Microenergetics: the systems with energy accumulation for microelectronic devices
Authors:
V.V. Kolesov - Ph. D. (Phys.-Math.), Head of Laboratory, Kotel\'nikov IRE of RAS (Moscow). E-mail: kvv@cplire.ru A.N. Reshetilov - Dr. Sc. (Chem.), Head of Laboratory, Institute of Biochemistry and Physiology of microorganisms RAS (Pushchino). E-mail: anatol@ibpm.pushchino.ru
Abstract:
It was considered the concept of systems with energy accumulation for microelectronic devices. It was described the prototype of system on the basis of the converter microcontroller capable continuously to transform various types of energy to electricity: mechanical, chemical, biological, solar, radio-frequency, acoustic, thermal, radiation. As an example of an unstable source of current the work of a biofuel microbic element was viewed, and as an example of energy accumulator the device and work of supercapacitor was considered.
Pages: 66-72
References

 

  1. http://www.ti.com.
  2. Reshetilov A.N., Reshetilova T.A. Nanosensors and their applications // Metal nanoparticles in microbiology. Berlin: SpringerVerlagGmbH. 2011. P. 269−283.
  3. Kolesov V.V., Krupenin S.V., Soldatov E.S., Reshetilov A.N. Biosensor on the Basis of Planar Nanostructure with built-in Enzymatic molecular Complexes // International Journal of Materials. MechanicsandManufacturing (IJMMM). April 2013.V. 1. № 2. P. 117−120.
  4. Bykov A.G., Kitova A.E., Kolesov V.V., Reshetilov A.N., Yaropolov A.I. The use of nanocarbon materials at developing biofuel elements // Proc. of 24th Int. CrimeanConference«Microwave & TelecommunicationTechnology» (Crimico-2014). 7−13 September 2014. Sevastopol. Crimea. Russia. P. 722−723.
  5. Indzhgiya E., Ponamoreva O., Alferov V., Reshetilov A., Gorton Lo. Interaction of ferrocene mediators with Gluconobacter oxydans immobilized whole cells and membrane fractions in oxidation of ethanol // Electroanalysis. 2012. V. 24. № 4. P. 924−930.
  6. Ragone D. Review of Battery Systems for Electrically Powered Vehicles // SAE Technical Paper 680453. 1968. doi: 10.4271/680453.
  7. JungJoon Yooet al.UltrathinPlanarGrapheneSupercapacitors //NanoLetters. 2011. V. 11. P. 1423−1427.
  8. A.H. Izadi-Najafabadiet al. High-Power Supercapacitor Electrodes from Single-Walled Carbon Nanohorn/Nanotube Composite. // ACS Nano 2011. V. 5. № 2. P. 811−819.
  9. Guihua Yuet al.EnhancingtheSupercapacitorPerformanceofGraphene/MnO2NanostructuredElectrodesbyConductiveWrapping //NanoLetters. 2011. V. 11. P. 4438−4442.
  10. Hailiang Wanget al.AdvancedAsymmetricalSupercapacitorsBasedonGrapheneHybridMaterials //NanoRes. 2011. № 4(8). P. 729-736.DOI 10.1007/sl2274-011-0129-6.
  11. http://www.cnews.ru/news/top/index.shtml-2013/08/05/537794.
  12. Salem P.P. Teorija dvojjnogo sloja. M.: Fizmatlit. 2003.105 s.