350 rub
Journal Radioengineering №8 for 2015 г.
Article in number:
Surface acoustic waves and magnon crystals
Keywords:
surface acoustic wave
spin wave
magnonic crystal
yttrium iron garnet
magnonic band gap
electronic tuning
nonreci-procity
metal film
electrical conductivity
Authors:
R.G. Kryshtal\' - Ph. D. (Phys.-Math.), Senior Research Scientist, Fryazino branch of Kotel\'nikov IRE of RAS
A.V. Medved\' - Dr. Sc. (Phys.-Math.), Head of Department, Fryazino branch of Kotel\'nikov IRE of RAS
Abstract:
A magnonic crystal exhibits a magnonic band gap in which the propagation of magnetic (spin or magnetostatic) waves is forbidden. Such a band gap is due to the artificial periodicity of the magnetic properties of the magnetic crystal. Such a periodicity in YIG may be produced by SAW (wave of elastic deformations) as perturbation of its magnetic properties due to magnetostriction in YIG. In this paper experimental results on investigation of magnonic crystals arising at SAW propagation in YIG as an artificial structure for surface magnetostatic waves propagation are presented. Tuning of magnonic gap frequency and gap depth were obtained by changing frequency and intensity of SAW that was explained in the frame of inelastic scattering of magnetostatic waves by SAW. The peculiarities of manifestations of nonreciprocity in such magnonic crystals built on the basis of structures \"gallium-gadolinium garnet (GGG) ? YIG film - and - GGG - YIG - Al film\" are considered. It was shown that in structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW- magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW- magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. The obtained experimental results can be useful for the development of new sensor devices and devices for information and signals processing in the GHz range.
Pages: 38-46
References
- Guljaev JU.V., Nikitov S.A., ZHivotovskijj L.V., Klimov A.A., Tajjad F., Presmanes L., Filimonov JU.A. Ferromagnitnye plenki s periodicheskimi strukturami s magnonnojj zapreshhennojj zonojj - magnonnye kristally // Pisma v ZHEHTF. 2003. T. 77. № 10. S. 670−674.
- Vasseur J.O., Dobrzynski L., Djafari-Rouhani B. Magnon band structure of periodic composites // Phys. Rev. B. 1996. V. 54. P. 1043.
- Chumak A.V., Serga A.A., Hillebrands B., Kostylev M.P. Scattering of surface and volume spin waves in a magnonic crystal // Appl. Phys. Lett. 2009. V. 94. P. 172511.
- Chumak A.V., Neumann T., Serga A.A., Hillebrands B., Kostylev M.P. A current-controlled, dynamic magnonic crystal // J. Phys. D: Appl. Phys. 2009. V. 42. P. 205005.
- Kai H. Chi, Yun Zhu, Rong W. Mao, James P. Dolas, Chen S. Tsai. An approach for analysis of magnetostatic volume waves in magnonic crystals // J. Appl. Phys. 2011. V. 109. P. 07D320.
- Mitsuteru Inoue, Alexander Baryshev, Hiroyuki Takagi, Pang Boey Lim, Kohei Hatafuku, Josho Noda, Kenji Togo. Investigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperature // Appl. Phys. Lett. 2011. V. 98. P. 132511.
- Ma F.S., Lim H.S., Wang Z.K., Piramanayagam S.N., Ng S.C., Kuok M.H. Micromagnetic study of spin wave propagation in bicomponent magnonic crystal waveguides // Appl. Phys. Lett. 2011. V. 98. P. 153107.
- Bai Lihui, Kohda Makoto, Nitta Junsaku. Observation of spin wave modes depending on a tunable periodic magnetic field // Appl. Phys. Lett. 2011. V. 98. P. 172508.
- Kryshtal R.G., Medved A.V. Surface acoustic wave in ytthrium iron garnet as tunable magnonic crystals for sensors and signal processing applications // Appl. Phys. Lett. 2012. V. 100. P. 192410.
- Krawczyk M., Grundler D. Review and prospects of magnonic crystals and devices with reprogrammable band structure // Condens. Matter. 2014. V. 26.P. 123202.
- Wang X.G., Guo G.H., Li Z.X., Wang D.W., Nie Y.Z., Tang W. Spin-wave propagation in domain wall magnonic crystal // EPL (Europhysics Letters). 2015. V. 109. № 3. P. 37008.
- Vysotskii S.L., Nikitov S.A., Pavlov E.S., Filimonov Yu.A. // Journal of Communications Technology and Electronics. 2013. V. 58. № 4. P. 347−352.
- Mruczkiewicz M., Krawczyk M., Gubbiotti G., Tacchi S., Filimonov Yu.A., Kalyabin D.V., Lisenkov I.V., Nikitov S.A. Nonreciprocity of spin waves in metallized magnonic crystal // New Journal of Physics. 2013. V. 15.P. 113023.
- Huber R., Krawczyk M., Schwarze T., Yu H., Duerr G., Albert S., Grundler D. Reciprocal Damon-Eshbach-type spin wave excitation in a magnonic crystal due to tunable magnetic symmetry // Appl. Phys. Lett. 2013. V. 102. P. 012403.
- Guljaev JU.V., Medved A.V., KHoang Van Fong Fizicheskie principy raboty ustrojjstv na poverkhnostnykh akusticheskikh volnakh dlja sistem svjazi i obrabotki informacii // Radiotekhnika. 2002. № 1. S. 90−107.
- Mednikov A.M., Popkov A.F., Anisimkin V.I., Nam B.P., Petrov A.A., Spivakov A.A., Khe A.S. // JTEPLett. 1981. V. 33. P. 646.
- Popkov A.F. The dispersion of surface magnetostatic waves in the presence of a traveling wave of elastic deformation // Mikroelectronika. 1981. V. 10. P. 446−456.
- Popkov A.F. // Fiz. Met. Metalloved. 1985. V. 59. P. 463.
- Gulyaev Yu.V., Kryshtal R.G., Medved A.V., Sorokin V.G. // Pis\'mavzh. Tekh. Fiz. 1986. V. 12. P. 502.
- Kryshtal R.G., Medved A.V., Nikitin I.P., Drobiazko I.B. // Zh. Tech. Fiz. 1986. V. 56. P. 1835.
- Hanna S.M., Murphy G.P., Sabetfakhri K., Stratakis K. // IEEE Ultrason. Symp. Proc. 1990. V. 209.
- Kryshtal R.G., Medved A.V., Popkov A.F. // J. Communications Technology and Electronics. 1994. V. 39. P. 132.
- Mruczkiewicz M., Krawczyk M., Gubbiotti G., Tacchi S., Filimonov Yu.A., Kalyabin D.V., Lisenkov I.V., Nikitov S.A. Nonreciprocity of spin waves in metallized magnonic crystal // New Journal of Physics. 2013. V. 15.P. 113023.
- Huber R., Krawczyk M., Schwarze T., Yu H., Duerr G., Albert S., Grundler D. Reciprocal Damon-Eshbach-type spin wave excitation in a magnonic crystal due to tunable magnetic symmetry // Appl. Phys. Lett. 2013. V. 102. P. 012403.
- Mruczkiewicz M., Pavlov E.S., Vysotsky S.L., Krawczyk M., Filimonov Yu.A., Nikitov S.A. Observation of magnonic band gaps in magnonic crystals with nonreciprocal dispersion relation // Physical Review B. 2014. V. 90. P. 174416.
- Mruczkiewicz M., Krawczyk M. Nonreciprocal dispersion of spin waves in ferromagnetic thin films covered with a finite-conductivity metal // Journal of Appl. Phys. 2014. V. 115. № 11. P. 113909.
- Seshadri S.R. Surface magnetostatic modes of a ferrite slab // Proceedings IEEE. 1970. V. 58. № 3. P. 506−507.
- Kanazawa N., Goto T., Hoong J.W., Buyandalai A., Takagi H., Inoue M. Metal thickness dependence on spin wave propagation in magnonic crystal using yttrium iron garnet // Journal of Appl. Phys. 2015. V. 117. № 17. P. 17E510.
- Ishak W.S. Magnetostatic Wave Technology: A Review // Proc. IEEE. 1988. V. 76. № 2. P. 171-187.