350 rub
Journal Radioengineering №7 for 2015 г.
Article in number:
Broadband waveguide matched loads based on microwave photonic crystals
Authors:
D.A. Usanov - Dr. Sc. (Phys.-Math.), Professor, Head of Department of Solid-State Physics, Saratov State University named after N.G. Chernyshevsky E-mail: usanovda@info.sgu.ru V.P. Meschanov - Dr. Sc. (Eng.), Professor, Director of NIKA-Microwave, Ltd (Saratov) E-mail: nika373@bk.ru A.V. Skripal - Dr. Sc. (Phys.-Math.), Professor, Department of Solid-State Physics, Saratov State University named after N.G. Chernyshevsky E-mail: skripala_v@info.sgu.ru N.F. Popova - Ph. D. (Eng.), Senior Research Scientist, Deputy Director , NIKA-Microwave, Ltd (Saratov) E-mail: nika373@bk.ru D.V. Ponomarev - Ph. D. (Phys.-Math.), Associate Professor, Department of Solid-State Physics, Saratov State University named after N.G. Chernyshevsky E-mail: ponomarev87@mail.ru
Abstract:
The results of theoretical and experimental justification of the possibility to use microwave photonic crystals to create microwave broadband matched loads are presented. The waveguide photonic crystal is designed as a one side short-circuited rectangular waveguide section with the structure of alternating metal and dielectric layers with different values dielectric permittivity of thickness and dielectric constant. The wave transfer matrix between regions with different values of the electromagnetic wave propagation constant has been used to calculate the electromagnetic wave reflection coefficients at normal incidence on layered metal-dielectric structure. Computer simulation has been demonstrated the possibility to create waveguide matched loads in the centimeter and millimeter wavelengths. The number and sequence of layers, their thickness, dielectric constant, and conductivity have been determined by solving the optimization problem in the way to obtain the magnitude of reflection coefficients less than predetermined values. The results of calculation of reflection coefficient and voltage standing wave ratio VSWR in the frequency ranges 8,15-12,05 GHz and 25,95-37,50 GHz at wave normal incidence on metal-dielectric multilayer structure completely filling the waveguide cross-section have been presented. According to the numerical results broadband waveguide matched loads based on multilayer dielectric structures and providing voltage standing wave ratio of less than 1,10 in the frequency range 8,15-12,05 GHz and less than 1,15 in the frequency range 25,95-37,50 GHz have been made.
Pages: 58-63
References

 

  1. Joannopoulos I.D., Villenneuve Pierre R., Fan S. Photonic crystals: putting a new twist on light // Nature. 1997. V. 386. № 13. P. 143-149.
  2. Yablonovitch E., Gmitter T.J. and Leung K.M. Photonic band structure: The face-centered-cubic case employing nonspherical atoms // The American Physical Society. 1991. V. 67. № 17. P. 2295-2298.
  3. Silin R.A., Sazonov V.P. Zamedljajushhie sistemy. M.: Sov. radio. 1966. 631 s.
  4. Brekhovskikh L.M. Volny v sloistykh sredakh. M.: Nauka. 1973. 342 s.
  5. Ozbay E., Temelkuran B., and Bayindir M. Microwave applications of photonic crystals // Progress in Electromagnetics Research. 2003. V. 41. P. 185-209.
  6. Kuriazidou C.A., Contopanagos H.F., Alexopolos N.G. Monolithic waveguide filters using printed photonic-bandgap materials // IEEE Transactions on microwave theory and techniques. 2001. V. 49. № 2. P. 297-306.
  7. Burns G.W., Thayne I.G., Arnold J.M. Improvement of planar antenna efficiency when integrated with a millimetre-wave photonic // Proc. of European Conference on Wireless Technology. (Amsterdam, Netherlands, 11-12 October 2004). P. 229−232.
  8. Hsien-Shun Wu, Ching-Kuang C. Tzuang. Miniaturized high-gain synthetic rectangular waveguide antenna of near-omnidirectional radiation // Proc. of 34-rd European Microwave Conf. (Amsterdam, Netherlands, 12-14 October 2004). 2004. V. 2. P. 1189-1192.
  9. Beljaev B.A., Voloshin A.S., SHabanov V.F. Issledovanie mikropoloskovykh modelejj polosno-propuskajushhikh filtrov na odnomernykh fotonnykh kristallakh // Doklady Akademii Nauk. 2005. T. 403. № 3. S. 319−324.
  10. Dmitry Usanov, Alexander Skripal, Anton Abramov, Anton Bogolubov, Vladimir Skvortsov, Merdan Merdanov. Measurement of the metal nanometer layer parameters on dielectric substrates using photonic crystals based on the waveguide structures with controlled irregularity in the microwave band // Proc. of 37rd European Microwave Conference. 2007. P. 198-201.
  11. Usanov D.A., Skripal A.V., Abramov A.V., Bogoljubov A.S. Izmenenie tipa rezonansnogo otrazhenija ehlektromagnitnogo izluchenija v strukturakh nanometrovaja metallicheskaja plenka - diehlektrik // Pisma v ZHTF. 2007. T. 3. № 2. S. 13-22.
  12. Helszajn J. Passive and Active Microwave Circuits. John Wiley & Sons. New York, Chichester, Brisbane, Toronto. 1978.
  13. Lee K.A., Guo Y., Stimson Ph.A., Potter K.A., Jung-Chih Chiao, Rutledge D.B. Thin-film power-density meter for millimeter wavelengths // IEEE Transactions on Antennas and Propagation. 1991.V. 39. № 3. P. 425−428.
  14. Usanov D.A., Skripal A.V., Abramov A.V., Bogoljubov A.S. Izmerenija tolshhiny nanometrovykh sloev metalla i ehlektroprovodnosti poluprovodnika v strukturakh metall-poluprovodnik po spektram otrazhenija i prokhozhdenija ehlektromagnitnogo izluchenija // ZHTF. 2006. T. 76. № 5. S. 112-117.
  15. CHaplygin JU.A., Usanov D.A., Skripal A.V., Abramov A.V., Bogoljubov A.S. Metodika izmerenija ehlektroprovodnosti nanometrovykh metallicheskikh plenok v sloistykh strukturakh po spektram otrazhenija ehlektromagnitnogo izluchenija // Izvestija VUZov. EHlektronika. 2006. № 6. S. 27-35.
  16. Usanov D.A., Skripal Al.V., Abramov A.V., Bogolyubov A.S., Kalinina N.V. Measurements of thickness of metal films in sandwich structures by the microwave reflection spectrum // Proc. of 36rd European Microwave Conference. Manchester. UK. 10−15 September 2006. P. 921−924.
  17. Usanov D.A., Skripal A.V., Abramov A.V., Bogoljubov A.S., Skvorcov V.S., Merdanov M.K. Ispolzovanie volnovodnykh fotonnykh struktur dlja izmerenija parametrov nanometrovykh metallicheskikh sloev na izolirujushhikh podlozhkakh // Izvestija VUZov. EHlektronika. 2007. № 6. S. 25−32.