350 rub
Journal Radioengineering №7 for 2015 г.
Article in number:
Simulation of the curved graphene selective hydrogenation process for formation of radioelectronic circuits
Keywords:
selective hydrogenation
curved graphene
local stresses
the ionization potential
the energy gap
density of states
Authors:
O.E. Glukhova - Dr. Sc. (Phys.-Math.), Associate Professor, Head of Department «Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: glukhovaOE@info.sgu.ru
A.S. Kolesnikova - Ph. D. (Phys.-Math.), Assistant, Department «Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: kolesnikova.88@mail.ru
I.N. Saliy - Dr. Sc. (Phys.-Math.), Professor, Department «Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: sin@sgu.ru
M.M. Slepchenkov - Ph. D. (Phys.-Math.), асс., Department «Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: slepchenkovm@mail.ru
Abstract:
The article is devoted to the study of the laws of the selective hydrogenation of curved graphene using computer modeling methods - the empirical method based on the use of Brenner potential and quantum tight-binding method. The object of study is the curved graphene sheet with a length of 38 Å along the armchair direction and a length of 40 Å along the zigzag direction. Authors solve two research problems. The first problem is to predict the most likely landing sites of hydrogen atoms by analyzing the distribution of local stresses on the structure of atoms. The second is to establish regularities of change in electron and energy characteristics of curved graphene during chemisorption of hydrogen atoms. On the base of the local stresses distribution of the curved graphene atoms calculations the mechanism of forecasting the most likely landing sites of hydrogen atoms was proposed. The proposed mechanism may be used to form conductive areas in modern electronic circuits.
Pages: 13-17
References
- Elias D.C., Nair R.R., Mohiuddin T.M.G., Morozov S.V., Blake P., Halsall M.P., Ferrari A.C., Boukhvalov D.W., Katsnelson M.I., Geim A.K., Novoselov K.S. Control of graphene\'s properties by reversible hydrogenation: evidence for graphane // 2009. Science. V. 323. P. 610−613.
- Yang Y.E., Yang Y.R., Yan X.H. Universal optical properties of graphane nanoribbons: A first-principles study // Physica E. 2012. V. 44. P. 1406−1409.
- Li D., Xu Y., Chen X., Li B., Duan W. Tunable anisotropic thermal conduction in graphane nanoribbons // Appl. Phys. Lett. 2014. V. 104. P. 143108 (4).
- Eng A.Y.S., Poh H.L., Sanek F., Marysko M., Matejkova S., Sofer Z., Pumera M. Searching for Magnetism in Hydrogenated Graphene: Using Highly Hydrogenated Graphene Prepared via Birch Reduction of Graphite Oxides // ACS Nano. 2013. V. 7. P. 5930−5939.
- Ziogos O.G., Tsetseris L. Formation and properties of graphane superstructures // J. Phys.: Condens. Matter. 2013. V. 25. P. 085301.
- Peng Q., Dearden A.K., Crean J., Han L., Liu S., Wen X., De S. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology // Nanotechnology. ScienceandApplications. 2014. V. 7. P. 1−29.
- Aitken Z.H., Huang R. Effects of mismatch strain and substrate surface corrugation on morphology of supported monolayer graphene // Journal of Applied Physics. 2010. V. 107. № 123531. P. 1−10.
- Bao W., Miao F., Chen Z., Zhang Z., Jang W., Dames C.C., Lau N. Controlled ripple texturing of suspended graphene // Nature Nanotechnology. 2009. V. 4. P. 562−566.
- Glukhova O.E., Slepchenkov M.M. Teoreticheskoe issledovanie raspredelenija lokalnykh naprjazhenijj grafenovojj nanolenty // Nano- i mikrosistemnaja tekhnika. 2011. № 7. S. 2−4.
- Glukhova O.E., Kolesnikova A.S. EHmpiricheskoe modelirovanie prodolnogo rastjazhenija i szhatija grafenovykh nanochastic i nanolent // Fizika tverdogo tela. 2011. T. 53. № 9. S. 1850−1855.
- Glukhova O.E., Savostyanov G.V., Slepchenkov M.M. A new approach to dynamical determination of the active zone in the framework of the hybrid model (quantum mechanics/ molecular mechanics) // Procedia Materials Science. 2014. V. 6. P. 256−264.
- Glukhova O.E., Kolesnikova A.S., Slepchenkov M.M. Stability of the thin partitioned carbon nanotubes // Journal of Molecular Modeling. 2013. V. 19. № 10. P. 4369−4375.
- Glukhova O.E., ZHbanov A.I. Ravnovesnoe sostojanie nanoklasterov S60, S70, S72 i lokalnye defekty molekuljarnogo ostova // Fizika tverdogo tela. 2003. T. 45. № 1. S. 180−186.