350 rub
Journal Radioengineering №7 for 2015 г.
Article in number:
Resonance properties of cascaded frequency-selective surfaces
Authors:
S.A. Alaverdyan - Ph. D. (Eng.), Head of Department, Central Institute of Measuring Equipment (Saratov). E-mail: asinok@gmail.ru I.N. Kabanov - Ph. D. (Eng.), Head of Department, Mytishchinsky SRI of Radio-Measuring Instruments. E-mail: mr.kin63@mail.ru V.V. Komarov - Dr. Sc. (Eng.), Professor, Department «Radioengineering and telecommunications», Yuri Gagarin State Technical University (Saratov). E-mail: vyacheslav.komarov@gmail.com V.P. Meschanov - Dr. Sc. (Eng.), Professor, Director of NIKA-Microwave, Ltd (Saratov). E-mail: nika373@bk.ru
Abstract:
As it has been shown by many authors, functional possibilities of various passive devices of microwave and terahertz range can be essentially extended by using so-called frequency-selective surfaces (FSS). They find application in modern radio electronic systems as basic units of band-pass filters, absorbers, polarizers, modulators, power dividers and so on. One of such metasurfaces with cross shaped aperture elements (CAE) was considered in several publications for potential application as narrow-band filters. Electrodynamic characteristics of these FSS are determined by four main dimensions: cross length a, cross width b, grid period w and the metal basis thickness d. Compact and low-weight FSS-based filters demonstrate stable resonance properties in different frequency ranges and the pass band around 10%. As it has been proved in present study, this parameter can be improved by employing cascaded principle of such device design. Band-pass filter on double-layer metasurface with CAE has been modeled numerically with the help of the finite-difference time-domain technique implemented in commercial software QuickWave 3D. Simulation results have shown that the transmittance of cascaded filters essentially depends on the distance between FSS: pass band is decreased while EM waves attenuation is increased. The last drawback of such devices can be partially compensated by using metals with high electrical conduc-tivity in filters design and by increasing parameter b of CAE.
Pages: 9-12
References

 

  1. Sabah C., Dincer F., Karaaslan M., Unal E., Akgol O. Polarization insensitive FSS-based perfect metamaterial absorbers for GHz and THz frequencies // Radio Science. 2014. V. 49. P. 306−314.
  2. Kong H., Li G., Jin Z., Ma G., Zhang Z., Zhang C. Polarization-independent metamaterial absorber for terahertz frequency // International Journal of Infrared, Millimeter Wave and Terahertz Waves. 2012. V. 33. P. 649−656.
  3. Porterfield D.W., Hesler J.L., Densing R., Mueller E.R., Crowe T.W., Weikle R.M. Resonant metal-mesh bandpass filters for the far infrared // Applied Optics. 1994. V. 33. № 25. P. 6046−6052.
  4. Wang Y., Yang, Tian Y., Donnan R.S., Lancaster M.J. Micromachined thick mesh filters for millimeter-wave and terahertz applications // IEEE Transactions on Terahertz Science and Technology. 2014. V. 4. № 2. P. 247−253.
  5. MacDonald M.E., Alexanian A., York R.A., Popovic Z., Grossman E.N. Spectrla transmittance of lossy printed resonant-grid terahertz bandpass filters // IEEE Transactions on Microwave Theory and Techniques. 2000. V. 48. № 4. P. 712−718.
  6. Ustrojjstva poljarizacii radiovoln v teragercevom diapazone chastot / Pod red. A.S. JAkunina. M.: Radiotekhnika. 2012. 256 s.
  7. Meshhanov V.P., Alaverdjan S.A., Kabanov I.N., Komarov V.V. Razrabotka i modelirovanie dvumernykh periodicheskikh struktur dlja uzkopolosnojj filtracii signalov // Radiotekhnika. 2014. № 10. S. 9−13.
  8. Vegesna S., Zhu Y., Bernussi A., Saed M. Terahertz two-layer frequency selective surfaces with improved transmission characteristics // IEEE Transactions on Terahertz Science and Technology. 2012. V. 2. № 4. P. 441−448.
  9. Gwarek W.K., Celuch-Marcysiak M. Wide-band S‑parameters extraction from FDTD simulations for propagating and evanescent modes in inhomogeneous guides // IEEE Transactions on Microwave Theory and Techniques. 2003. V. 51. № 8. P. 1920−1928.
  10. Alaverdjan S.A., Kabanov I.N., Komarov V.V., Meshhanov V.P. Matematicheskoe modelirovanie difrakcii ehlektromagnitnykh voln na setochnykh poljarizacionnykh strukturakh // Radiotekhnika i ehlektronika. 2014. T. 59. № 9. S. 925−931.