350 rub
Journal Radioengineering №5 for 2015 г.
Article in number:
Monoblock thin-walled quadrupole electrode system for electron and ion-optical devices
Authors:
V.S. Gurov - Dr.Sc. (Eng.), Professor, Head of Department «Industrial Electronics», Rector of the Ryazan State Radio Engineering University. E-mail: gurov.v.s@rsreu.ru M.V. Dubkov - Ph.D. (Eng.), Associate Professor, Head of Department «General and Experimental Physics», Deputy Rector for Academic Work of the Ryazan State Radio Engineering University. E-mail: dubkov.m.v@rsreu.ru M.A. Burobin - Ph.D. (Eng.), Associate Professor, Deputy Head of Department «General and Experimental Physics», Ryazan State Radio Engineering University. E-mail: burobin.mikhail@yandex.ru A.V. Nikolaev - Senior Lecturer, Department «General and Experimental Physics», Ryazan State Radio Engineering University. E-mail: arniell@mail.ru
Abstract:
Recently there has been a transition to a hyperbolic quadrupole electrode systems (HES) with hyperbolic electrodes fastened in a monob-lock using a quartz glass or ceramic. Due to the large mass and low mechanical strength their field of application is limited only in statio-nary equipment. In this regard the development of resistant to mechanical and thermal influences monoblock quadrupole HES for creat-ing energy and mass analyzers, systems for transportation and focusing of the charged particles is actual. It was developed a monoblock thin-walled quadrupole HES which has a high resistance to external mechanical and thermal effects that can operate reliably on moving objects. It is shown that the free mounting of the electrodes allows them to maintain a hyperbolic profile when heated in the temperature range 200-250 °C. Performing quadrupole HES as a thin-walled monoblock with a wall thickness of 1-1,2 mm improves its resistance to me-chanical stress, as shock and vibration of up to 100g. The use of individual sections of the quadrupole-modules allows us to create elec-trode systems of virtually any length while maintaining high quality of the electric field.
Pages: 80-87
References

 

  1. JAvor S.JA. Fokusirovka zarjazhennykh chastic kvadrupolnymi linzami. M.: Atomizdat. 1968. 278 s.
  2. SHeretov EH.P., Gurov V.S., Dubkov M.V. Giperboloidnye ehlektrodnye sistemy dlja kvadrupolnogo filtra mass // Vestnik Rjazanskojj gosudarstvennojj radiotekhnicheskojj akademii. 1996. № 1. C. 141-142.
  3. SHeretov EH.P. Giperboloidnye mass-spektrometry // Izmerenija, kontrol, avtomatizacija. 1980. № 11-12. C. 29-43.
  4. Sheretov E.P., Gurov V.S., Safonov M.P., Philippov I.V. Hyperboliod mass spectrometers for space exploration // Int. J. Mass Spectrom. 1999. № 189. P. 9-17.
  5. Dubkov M.V., Kolotilin B.I., Nikolaev A.V.Issledovanie vlijanija nelinejjnykh iskazhenijj ehlektricheskogo polja v analizatore kvadrupolnogo filtra mass na uslovija sortirovki zarjazhennykh chastic // Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2011. № 36. C. 67-71.
  6. Dubkov M.V., Nikolaev A.V. Vlijanie nelinejjnykh iskazhenijj ehlektricheskogo polja na ehllipsy zakhvata zarjazhennykh chastic v proletnykh kvadrupolnykh mass-spektrometrakh // Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2007. № 21. C. 97-100.
  7. Gurov V.S., Dubkov M.V., Romanov I.N., Nikolaev A.V. O temperaturnojj deformacii kvadrupolnojj ehlektrodnojj sistemy s giperbolicheskimi ehlektrodami // Mass-spektrometrija. 2014. T. 11. № 2. S. 77-80.
  8. Birger I.A., Mavljutov R.R. Soprotivlenie materialov. M.: Izd. MAI, 1994. 512 s.
  9. Patent № 2091902 (RF)Sposob izgotovlenija analizatora kvadrupolnogo filtra mass / EH.P. SHeretov, V.S. Gurov,  M.V. Dubkov, M.I. Evdokimova.