350 rub
Journal Radioengineering №5 for 2015 г.
Article in number:
The dynamic error correction
Keywords:
dynamic error
identification of the impulse response
inverse problem
a sustainable solution
regularization Tikhonov
Authors:
L.A. Baranov - Ph.D. (Eng.), Associate Professor, Head of Sector, Flight Research Institute
S.G. Gurzhin - Ph.D. (Eng.), Associate Professor, Department of Information Measurement and Biomedical Engineering, Ryazan State Radio Engineering University. E-mail: gurzhin@mail.ru
V.I. Zhulev - Dr.Sc. (Eng.), Professor, Department of Information Measurement and Biomedical Engineering, Ryazan State Radio Engineering University. E-mail: zhulev.v.i@rsreu.ru
S.V. Nikitin - Head Lecturer, Department of Information Measurement and Biomedical Engineering, Ryazan State Radio Engineering University
E.M. Proshin - Dr.Sc. (Eng.), Professor, Department of Information Measurement and Biomedical Engineering, Ryazan State Radio Engineering University
Abstract:
When the measured value due to the inertia of the parts of the measuring channel is changed with time, dynamic error occurs. The article discusses the issue of digital processing of the output signal of the measuring channel to minimize the dynamic error.
To solve the problem identification of the impulse response of the device is considered.
Correction of dynamic errors associated with the solution of the inverse problem, i.e. finding the input signal on the output is studied. These three conditions for the correctness of the inverse problem by Hadamard are considered.
The solution of the inverse discrete tasks is found in two ways: with a regularization of the solutions in time and frequency domains.
A simulation of correction of dynamic errors of the measuring channel for the input signal of the complex form of a two types of noisy interference ? «white noise» and single-frequency interference is carried out.
In conclusion, a comparison of two methods of solving the discrete inverse problem for the correction of dynamic errors is presented.
Pages: 66-72
References
- Granovskijj V.A. Dinamicheskie izmerenija: Osnovy metrologicheskogo obespechenija. L.: EHnergoatomizdat. 1984. 224 s.
- Tikhonov A.N., Arsenin V.JA. Metody reshenija nekorrektnykh zadach. M.: Nauka. 1979. 285 s.
- Tikhonov A.N. i dr. CHislennye metody reshenija nekorrektnykh zadach. M.: Nauka. 1990. 229 s.
- Kabanikhin S.I. Obratnye i nekorrektnye zadachi. Novosibirsk: Sibirskoe nauchnoe izdatelstvo. 2009. 457 s.
- Abramov A.M., Borisov A.G., Gurzhin S.G., Kaplan M.B., Proshin E.M., Sadovskijj G.A., SHuljakov A.V. Kompjuternaja avtomatizacija metrologicheskogo ispytanija cifrovykh izmeritelnykh sredstv // Radiotekhnika. 2012. № 3. S. 115-122.
- Abramov A.M., Bondarcev V.V., Gurzhin S.G., ZHulev V.I., Kaplan M.B., Proshin E.M., SHuljakov A.V. Virtualnye metrologicheskie sredstva ispytanijj modulejj ACP dlja sistem bortovykh izmerenijj // Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2014. № 50-1.
- Abramov A.M., Gurzhin S.G., ZHulev V.I., Proshin E.M., Sadovskijj G.A., SidorovD.A. Matematicheskoe i imitacionnoe modelirovanie izmeritelnykh modulejj analogo-cifrovogo preobrazovanija // Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2014. № 50-2.