350 rub
Journal Radioengineering №4 for 2015 г.
Article in number:
Analysis of a longitudinally non-uniform dielectric transition in a circular waveguide: 1. Hybrid projective method
Authors:
O.N. Smolnikova - Ph. D. (Eng.), Associate Professor, Moscow Aviation Institute; Head of Department, JSC «Radiofizika». E-mail: smon2012@mail.ru N.A. Fedotova - Student, Moscow Institute of Physics and Technology (State University). E-mail: natalyfed19@gmail.com S.P. Skobelev - Ph. D. (Eng.), Leading Research Ph. D. (Eng.), JSC «Radiofizika»; Associate Professor, Moscow Institute of Physics and Technology (State University). E-mail: s.p.skobelev@mail.ru
Abstract:
The problem of electromagnetic wave scattering at dielectric discontinuities in circular waveguide is of great interest for a number of practical applications including matching transitions for phase shifters and radiating elements in the form of dielectric rods protruding from waveguides, dielectric resonators in waveguide filters, polarizers, and matching loads. The indicated problem for longitudinally uniform transitions can be solved by the method of projective matching of the fields on the boundaries of the regions where the fields can be represented as expansions over eigenwaves of the latter. In case of longitudinally non-uniform transitions, the problem can be solved by the method of cross sections or by the incomplete Galerkin method. Some examples of application of the indicated methods for special cases of transitions excited in the TE11 and TE01 modes are available in the literature. In the present paper, a problem of electromagnetic wave scattering at a junction of two circular waveguides, where one of them contains an axially symmetrical layered longitudinally non-uniform dielectric transition of finite length is considered. A numerical algorithm is developed for solution of the problem on the basis of the hybrid projective method including projective matching of the fields on the transition boundaries, projection of the Maxwell equations on the transverse wave vector functions of the waveguide containing the transition, and application of the one-dimensional finite element method in a projective formulation.
Pages: 84-90
References

 

  1. Denisenko V.V., Dubrov JU.B., Korchemkin JU.B.i dr. Mnogoehlementnaja FAR Ka diapazona voln // Antenny. 2005. № 1. S. 7−14.
  2. Vinichenko JU.P., Safonov A.P., Sekistov A.N., Semenov A.A., Tumanskaja A.E. SHirokopolosnyjj volnovodno-sterzhnevojj ehlement fazirovannojj antennojj reshetki KH-diapazona // Antenny. 2008. № 5. S. 44−48.
  3. Batov P.L., Dobrozhanskaja O.L. Rezultaty proektirovanija mnogomodovykh diehlektricheskikh sterzhnevykh izluchatelejj dlja FAR // Antenny. 2008. № 5. S. 58−63.
  4. Veselov G.I., Soldatkin V.JU. Rezonansnye svojjstva diehlektricheskojj shajjby v kruglom volnovode // Radiotekhnika i ehlektronika. 1988. T. 23. № 2. S. 276−284.
  5. Lee J.C. A compact Q-/K-band dual frequency feed horn // IEEE Trans. AntennasPropagat. 1984. V. AP‑33. № 10. P. 1108−1111.
  6. Nefedov E.I. Difrakcija ehlektromagnitnykh voln na diehlektricheskikh strukturakh. M.: Nauka. 1979.
  7. Kacenelenbaum B.Z. Teorija nereguljarnykh volnovodov s medlenno menjajushhimisja parametrami. M.: Izdatelstvo AN SSSR. 1961.
  8. Nikolskijj V.V. Variacionnye metody dlja vnutrennikh zadach ehlektrodinamiki. M.: Nauka. 1967.
  9. Ilinskijj A.S., Kravcov V.V., Sveshnikov A.G. Matematicheskie modeli ehlektrodinamiki. M.: Vysshaja shkola. 1991.
  10. Amitejj N., Galindo V., Vu CH.-P. Teorija i analiz fazirovannykh antennykh reshetok. M.: Mir. 1974.
  11. Skobelev S.P. Fazirovannye antennye reshetki s sektornymi parcialnymi diagrammami napravlennosti. M.: Fizmatlit. 2010.