350 rub
Journal Radioengineering №2 for 2015 г.
Article in number:
Structural synthesis and optimization of instrumentation amplifiers on the base of differential difference amplifiers. 1. Theory
Keywords:
instrumentation amplifier
differential difference amplifier
self-compensation and cancellation effects
zero drift voltage
differential gain
CMRR
Authors:
S.G. Krutchinsky - Dr. Sc. (Eng.), Professor, Radio Engineering Systems and Management Institute of SFU (Taganrog)
E-mail: sgkrutch@mail.ru
A.E. Titov - Post-graduate Student, Radio Engineering Systems and Management Institute of SFU (Taganrog)
E-mail: alex.evgeny.titov@gmail.com
Abstract:
E-mail: alex.evgeny.titov@mail.ruProblem of a structural synthesis and optimization of analogue devices accepts additional practical significance at present. Variety of technological processes of manufacturing of systems on chip and IP blocks advances additional limits on components and expenditure of energy. In this regard, syntheses of the circuits with additional parametric «degrees of freedom», which can be used for optimization of such devices by main qualitative indicators, have important practical significance.
The proposed procedure of structural synthesis of instrumentation amplifiers based on the analysis of the properties of generalized structure with basis active elements as differential difference amplifiers (DDA). The main qualitative indicators of such devices are zero drift voltage, CMRR and working frequency range.
Formulated functional and topological features of the optimization of these indicators do not lead to contradictory parametric requirements and are sufficient and unique. At the same time minimizing the zero drift voltage of instrumentation amplifier and common-mode gain (CMG) are provided by the cancellation effect of the bias e.m.f. of separate DDA and their CMG coefficients, and the increase of the working frequency range by self-compensation of GBW and static gain of separate DDA, which leads to the minimization corresponding parametric sensitivity.
For solving practical problems of synthesis of optimal structures proposed incremental algorithm for design of circuits with specified properties. Theoretical conclusions are formulated.
Pages: 98-106
References
- Mitra S.K., Soderstrand M.A. Fundamental limitation of active filters // Proc. of 4‑th colloquium on microwave communication.Budapest. 1970. P. CT18/1−CT18/11.
- Gloriozov E.L., Panferov V.P. Strukturnyjj skhemotekhnicheskijj sintez ehlektronnykh skhem // Izvestija VUZov. Radiolektronika. 1981. T. 24. № 6. S. 80−84.
- Kapustjan V.I., Bukashkin S.A., Denisov V.S. Optimizacija struktur aktivnykh filtrov vysokogo porjadka // Izvestija VUZov. Radiotekhnika. 1988. № 8. S. 51−53.
- Krutchinskijj S.G. Strukturno-topologicheskie priznaki ARC-skhem s sobstvennojj kompensaciejj // Izvestija VUZov. Radiolektronika. 1994. T. 37. № 1−2. S. 38−43.
- Krutchinskijj S.G. Strukturnyjj sintez analogovykh ehlektronnykh skhem. Rostov-na-Donu: SKNC VSH. 2001. S. 34−51.
- Krutchinskijj S.G., Titov A.E. Precizionnye instrumentalnye usiliteli // Problemy razrabotki perspektivnykh mikro- i nanoehlektronnykh skhem - 2010. Sb. trudov pod obshh. red. akademika RAN A.L. Stempkovskogo. M.: IPPMRAN. 2010. S. 533−536.
- Variable gain instrumentation amplifier: U.S. Patent 2012/8138830 B2 / Bugyik P.L.; assignee QUALCOMM inc., Reseda. CA (US). NoUS 12/418,408; filedOct. 14, 2010; Pub. Date: Mar. 20, 2012.
- Titov A.E., Dvornikov O.V. Radiacionno-stojjkie instrumentalnye usiliteli na ABMK // Problemy razrabotki perspektivnykh mikro- i nanoehlektronnykh skhem - 2012. Sb. trudov pod obshh. red. akademika RAN A.L. Stempkovskogo. M.: IPPM RAN. 2012. S. 284−287.
- Krutchinskijj S.G., Nefedova A.V. Strukturnaja optimizacija differencialnykh kaskadov // Izvestija JUFU. Tekhnicheskie nauki. 2008. № 7 (84). S. 41−48.
- Krutchinsky S.G., Titov A.E., Tsibin M.S. Structural optimization of differential stage operational amplifiers // International Conference on Signal and Electronic System. Poland: Institute of Electronics, Silesian University of technology. 2010. P. 205−208.
- Prokopenko N.N., Serebrjakov A.I., Budjakov P.S. Sposob povyshenija stabilnosti nulja analogovykh mikroskhem s vysokoimpedansnym uzlom v uslovijakh temperaturnykh i radiacionnykh vozdejjstvijj // Problemy razrabotki perspektivnykh mikro- i nanoehlektronnykh skhem - 2010. Sb. trudov pod obshh. red. akademika RAN A.L. Stempkovskogo. M.: IPPM RAN. 2010. S. 295−300.
- Krutchinskijj C.G., Titov A.E. Multidifferencialnyjj OU v rezhime instru-mentalnogo usilitelja // NTV SPbGPU. 2010. № 3 (101). S. 200−203.
- Fadeeva V.I., Fadeev D.K. Vychislitelnye metody linejjnojj algebry. M.: Fizmatgiz. 1963. 655 s.