350 rub
Journal Radioengineering №2 for 2015 г.
Article in number:
Theoretical and experimental research of two-armed conical equiangular-logospiral antenna of small satellite AIST-2
Keywords:
conical spiral antenna
integral equation
an integral representation of electromagnetic field
thin-wire approach
the correct physical model
Authors:
V.A. Neganov - Dr. Sc. (Phys.-Math.), Professor, Head of Department, Volga State University of Telecommunications and Informatics (Samara)
E-mail: neganov-samara@yandex.ru
D.P. Tabakov - Ph. D. (Phys.-Math.), Associate Professor, Volga State University of Telecommunications and Informatics (Samara)
E-mail: illuminator84@yandex.ru
S.B. Filippov - Head of Rroject-to-Construction Group of Antenna-Feeder Devices, JSC «SRC «Progress» (Samara)
E-mail: fsb-progress@yandex.ru
A.S. Maltsev - Design Engineer, Project-to-Construction Group of Antenna-Feeder Devices, JSC «SRC «Progress» (Samara)
E-mail: fsb-progress@yandex.ru
Abstract:
In this article is about Spiral antenna (SA), which designed for transmission of telemetry from onboard control system of the small spacecraft «AIST 2» on terrestrial stations in a mode of the oriented flight.
The advantage of two-armed logospiral antennas is greater stability of their parameters and characteristics on the frequency range. Directivity pattern (DP) of such antennas can be calculated if we know the distribution of current on the spiral elements.
As a rule, development of the spiral antenna which would provide necessary characteristics, begins with calculations under engineering formulas according to which spiral antennas are considered in the various approximations based on the physicist of happening processes.
The main lack of such approach is low level of results equivalence of real measurements to the theoretical calculations. Therefore, the development of the SA it was decided to build a more strict mathematical model of the antenna, based on integral representation of the electromagnetic field, that is going over to integral equations relatively to unknown currents while the inner electromagnetic task is solved.
As a result the mathematical model two-armed equiangular conical spiral antenna with a fine-wire reflector of the finite sizes has been developed. Within the model it is possible to change number of coils of a spiral, diameter of peak and the cone base, width of spiral entrances, density of a grid of a reflector and type of excitation of the antenna. Results of calculations and measurements of normalized amplitude direction characteristics for two pre-production models of antennas are shown. As a whole good enough coincidence of results of experiment to results of calculations is watched. It is found that the increasing the size of the SA screen with selected geometry and fixed frequency in the case of antiphase excitation leads to the collapse of DC, and in the case of in-phase excitation - to additional petals in DC.
Disadvantages of the mathematical model should be noted that increasing of the size of the screen very quickly increases the total number of segments, and consequently the square of the number of segments increases the dimension of the impedance matrix.
Therefore, in the future we plan to develop the model of the screen using a variety of options: pojection of the current distribution on thin-wire screen elements in the basis, reduces the size of solvable linear algebraic equation, the transition to the solid model of the screen on the basis of two-dimensional singular integral equations, or the development of a model circular screen, two-dimensional diffraction problem on which can be reduced to a set of one-dimensional tasks concerning the Fourier harmonics of the current distribution.
Pages: 5-15
References
- Drabkin A.L., Zuzenko V.L., Kislov A.G.Antenno-fidernye ustrojjstva. Izd. 2‑e, dop. i pererab. M.: Sov. radio. 1974. 536 s.
- JUrcev O.A., Runov A.V., Kazarin A.N. Spiralnye antenny. M.: Sov. radio. 1974. 223 s.
- ZHuk M.S., Molochkov JU.B.Proektirovanie linzovykh, skanirujushhikh, shirokodiapazonnykh antenn i fidernykh ustrojjstv. M.: EHnergija. 1973. S. 182−188.
- Ramzejj V. CHastotno nezavisimye antenny / Per. s angl. A.P. Sakharova. M.: Mir. 1968.
- Neganov V.A., Tabakov D.P., Filippov S.B.Matematicheskaja model dvuzakhodnojj konicheskojj spiralnojj antenny s tonkoprovolochnym reflektorom konechnykh razmerov // Fizika volnovykh processov i radiotekhnicheskie sistemy. 2013. T. 16. № 4. S. 38−45.
- CHebyshev V.V. Mikropoloskovye antenny v mnogoslojjnykh sredakh. M.: Radiotekhnika. 2007.
- Mei K.K. On the integral Equations of Thin Wire Antennas // IEEE Trans. on Ant. and Prop. 1965. AP‑13. P. 374−378.
- Baghdasarian A., Angelakos D.J. Scattering and radiation from conducting loops, to be published as an Electronics Researsh Lab. Rept 65‑1. University of California. Berkeley.
- Adekola S., Mowete A., Ayorinde A. Compact Theory of the Broadband Elliptical Helical Antenna // European Journal of Scientific Researsh. 2009. V. 31.№ 3. P. 446−490.
- Kapitonov V.A., Neganov V.A., Marsakov I.JU., Tabakov D.P.Integralnoe predstavlenie ehlektromagnitnogo polja geometricheski kiralnojj struktury // Fizika volnovykh processov i radiotekhnicheskie sistemy. 2012. T. 15. № 4. S. 6−13.
- Neganov V.A., Nefedov E.I., JArovojj G.P.EHlektrodinamicheskie metody proektirovanija ustrojjstv SVCH i antenn / Pod red. V.A. Neganova. M.: Radio i svjaz. 2002. 416 s.
- Strizhkov V.A. Matematicheskoe modelirovanie ehlektrodinamicheskikh processov v slozhnykh antennykh sistemakh // Matematicheskoe modelirovanie. 1989. T. 1. № 8. S. 127−138.
- Vychislitelnye metody v ehlektrodinamike / Pod red. R. Mitry, per s angl. pod red. EH.L. Burshtejjna. M.: Mir. 1977. 487 s.
- Kljuev D.S. Raschet kharakteristik zerkalnojj antenny s ploskim zerkalom metodom dvumernykh singuljarnykh integralnykh uravnenijj // Fizika volnovykh processov i radiotekhnicheskie sistemy. 2010. T. 13. № 1. S. 21−26.