350 rub
Journal Radioengineering №10 for 2015 г.
Article in number:
Prospects for the use of crown ethers to create miniature radiating systems on their basis
Authors:
O.E. Glukhova - Dr. Sc. (Phys.-Math.), Associate Professor, Head of Department Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: graphene@yandex.ru A.S. Kolesnikova - Ph. D. (Phys.-Math.), Assistant, Department «Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: Kolesnikova.88@mail.ru D.A. Melnikov - Undergraduate, Department «Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: good.trumpet@gmail.com I.N. Saliy - Dr. Sc. (Phys.-Math.), Professor , Department «Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: sin@sgu.ru M.M. Slepchenkov - Ph. D. (Phys.-Math.), Assistant, Department «Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: slepchenkovm@mail.ru
Abstract:
The paper is devoted to the study of behavior of alkali metal ion in the cavity of crown ether membrane under the influence of external factors such as temperature and electric field. The studies were performed using a semi-empirical method AM1 and the molecular dynamics method in the tight binding approximation (MDTB). The object of investigation is molecular system of a cryptand-222 with encapsulated sodium ion. During the study it is revealed the presence of irregular oscillations for the sodium ion inside the cavity of cryptand. The paper proposes a mechanism for stabilizing the period (frequency) of the oscillation using an external electric field. It is shown that at the certain strength of the external field and the temperature charged ion can oscillate, accompanied by radiation in the terahertz range.
Pages: 133-137
References

 

  1. Planken P. Microscopy: Aterahertznanoscope // Nature. 2008. V. 456. P. 454−455.
  2. Jensenetal K. Carbon Nanotube Radio // Nano Lett. 2007. V. 7 (11). P. 3296−3299.
  3. Sun Y., Sy M.Y., Wang Y.X., Ahuja A.T., Zhang Y.T., Pickwell-Macpherson E. A promising diagnostic method: Terahertz pulsed imaging and spectroscopy // World J Radiol. 2011. V. 3. P. 55−65.
  4. Recur B., Guillet J.P., Bassel L., Fragnol C., Manek-Hönninger I., Delagnes J.C., Benharbone W., Desbarats P., Domenger J.P., Mounaix P. Terahertz radiation for tomographic inspection // Optical Engineering. 2012. V. 51. I. 9. P. 091609-1−091609-8.
  5. Vidal B., Nagatsuma T., Gomes N.J., Darcie T.E. Photonic Technologies for Millimeter- and Submillimeter-Wave Signals // Advances in Optical Technologies. 2012. V. 2012. I. 925065. P. 1−18.
  6. Tanoto H., Teng J.H., Wu Q.Y., Sun M., Chen Z.N.,            Maier S.A., Wang B., Chum C.C., Si G.Y., Danner A.J., Chua S.J. Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer // Nature Photonics. 2012. V. 6. P. 121−126.
  7. Han Y., Jiang Y., Chen C.F. Cryptand-based hosts for organic guests // Tetrahedron. 2015. V. 71. P. 503−522.
  8. Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P. Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions // The Journal of the American Chemical Society. 1985. V. 107 (13). P. 3902−3909.
  9. Glukhova O.E., Savostyanov G.V., Slepchenkov M.M. A new approach to dynamical determination of the active zone in the framework of the hybrid model (quantum mechanics/ molecular mechanics) // Procedia Materials Science. 2014. V. 6. P. 256−264.
  10. Glukhova O.E., Kolesnikova A.S., Nefedov I.S., Slepchenkov M.M. Nanoizluchatel giga- i teragercovogo diapazonov na osnove uglerodnogo nanostruchka: chislennoe modelirovanie // Pisma v ZHEHTF. T. 99. № 6. S. 398−402.
  11. Kvyatkovskii O.E., Zakharova I.B., Shelankov A.L., Makarova T.L. Magnetic properties of polymerized fullerene doped with hydrogen,fluorine and oxygen // Fullerenes, Nanotubes, and Carbon Nanostructures. 2006. V. 14. P. 385−389.