350 rub
Journal Radioengineering №10 for 2015 г.
Article in number:
Radar-absorbing properties of matrix polymer composite nanomaterials at microwave frequencies
Authors:
N.M. Ushakov - Dr. Sc. (Phys.-Math.), Head of Laboratory of Submicron Electronics, Saratov branch of Kotel\'nikov IRE of RAS, Professor, Department «Radio Engineering», Yuri Gagarin State Technical University of Saratov. E-mail: nmu@bk.ru S.Yu. Molchanov - Post-graduate Student, Department «Radio Engineering», Yuri Gagarin State Technical University of Saratov. E-mail: canishe@yandex.ru
Abstract:
The paper presents the results of numerical experiment aimed to investigation both of dielectric properties of polymer composite nanomaterials, and the electromagnetic wave attenuation in these materials over the frequency range from 1 GHz to 300 GHz. Calculations of dielectric loss are performed basing on the Maxwell−Garnet-, Maxwell−Wagner-, and Cole−Cole-models. As a matrix, there was considered polymers that were dielectrics such as polyethylene of high pressure and polymethylmethacrylate. As the materials for nanoparticles, a silver (σ = 6-10−8 Sm/m) and semiconductor compounds such as lead sulfide (PbS, σ = 2-10−3 Sm/m) and indium antimonide (InSb, σ = 6-10−5 Sm/m) were chosen. A concentration of nanoparticles in the matrix was corresponding to 1016-1017 sm−3 that was agreed with an average statistical value. Dimensions of nanoparticles did not exceed 30 nµm. Frequency dependencies of radio absorption of electromagnetic radiation in composite nanomaterials with different electro-conductivities of nanoparticles are given. A comparison of suggested composite nanomaterials with the known ones was carried out according to the absorption level over the frequency range from 2 to 40 GHz. It is shown, the absorber on the composite nanomaterial silver-polymethylmethacrylate provides a minimum level of absorption of electromagnetic radiation power equal to 20 dB at the thickness of 50 µm.
Pages: 127-132
References

 

  1. Foster P.R., Martin D., Parini C., Räisänen A.V., Ala­Laurinaho J., Hirvonen T., Lehto A., Sehm T., Tuovinen J., Jensen F., Pontoppidan K. // MM Wave Antenna Testing Techniques - Phase 2. 1996. Maasreport. P. 304.
  2. Singh D., Kumar A., Meena S., Agarwala V. // Analysis of frequency selective surfaces for radar absorbing materials progress // In Electromagnetics Research B. 2012. 38. P. 297−314.
  3. Huang M.J. Targets based on the high frequency radar cross section // Journal of Shanghai University. August 2002. P. 316−321.
  4. Petrov V., Nikolajjchuk G., JAkovlev S., Lucev L. Issledovanie radiopogloshhajushhikh svojjstv materialov na osnove nanostruktur // Komponenty i tekhnologii. 2008. № 12. S. 141−146.
  5. Ushakov N.M., Kosobudskijj I.D., JUrkov G.JU., Gubin S.P., Zapsis K.V., Kochubejj V.I., Ulzutuev A.N. Novye kompozicionnye nanomaterialy s upravljaemymi svojjstvami dlja radiotekhniki i ehlektroniki // Radiotekhnika. 2005. № 10. S. 105−108.
  6. Gaylor K. Radar Absorbing Materials - Mechanisms and Materials // MRL Technical Report MRL-TR-89-1 Published by DSTO Materials Research Lab. @ CommonwealthofAustralia. 1989. P. 10−14.
  7. Ushakov N.M., Molchanov S.JU. Modelirovanie diehlektricheskikh svojjstv tolstoplenochnykh polimernykh nanokompozitov na osnove poliehtilena nizkojj plotnosti v UVCH-, SVCH- i KVCH-diapazonakh radiovoln // Radiotekhnika. 2014. № 10. S. 63−67.
  8. Liu J.H., Chen C.L., Lue H.T., and Lue J.T. Measurement of Dielectric Constants of Metallic Nanoparticles by a Microwave Dielectric Resonator // Meas. Sci. Technol. 2002. 13. S. 2032−2037.
  9. Golovan L.A., Timoshenko V.JU., Kashkarov P.K. Opticheskie svojjstva nanokompozitov na osnove poristykh sistem // UFN. T. 177. № 6. S. 619−638.
  10. Glinchuk M.D., Morozovskaja A.N. Radiospektroskopija i diehlektricheskie spektry nanomaterialov // Fizika tverdogo tela. 2003. T. 45. № 8. S. 1510−1518.
  11. Lushhejjkin G.A. Metody issledovanija ehlektricheskikh svojjstv polimerov. M.: KHimija. 1988. 160 s.
  12. Weir W.B. Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies // Proc. of the IEEE. 1974. V. 62. № 1. P. 33−36.
  13. Voronin I.V., Gorbatov S.A., Naumenko V.JU., Petrunin V.F. Mnogoslojjnye radiopogloshhajushhie nanokompozitnye materialy i pokrytija // Fizika i ximija obrabotki materialov. 2007. № 4. S. 5−10.
  14. Kosobudskijj I.D., Ushakov N.M., JUrkov G.JU. Vvedenie v khimiju nanorazmernykh obektov. Saratov: Saratovskijj tekhnicheskijj un-t. 2006. 182 s.
  15. Muzalev P.A., Kosobudskijj I.D., Ushakov N.M., Panova L.G. Metallicheskie nanochasticy v akrilovykh polimernykh matricakh // Perspektivnye materialy. 2011. № 3. S. 84−87.
  16. Sverkhshirokopolosnye mikrovolnovye ustrojjstva / Pod red. A.P. Krenickogo, V.P. Meshhanova. M.: Radio i svjaz. 2001. 560 s.
  17. Sintez sverkhshirokopolosnykh mikrovolnovykh struktur / Pod red. V.P. Meshhanova, A.P. Krenickogo. M.: Radio i svjaz. 2005. 411 s.