350 rub
Journal Radioengineering №10 for 2015 г.
Article in number:
Waveguide photonic structures based on resonance diaphragms
Authors:
D.A. Usanov - Dr. Sc. (Phys.-Math.), Professor, Department of Solid-State Physics, Saratov State University named after N.G. Chernyshevsky, Honored Scientist of RF. E-mail: usanovda@info.sgu.ru A.V. Skripal - Dr. Sc. (Phys.-Math.), Professor, Department of Solid-State Physics, Saratov State University named after N.G. Chernyshevsky. E-mail: skripala_v@info.sgu.ru M.K. Merdanov - Ph. D. (Eng.), General Director of JCS «SPC «Electronic engineering» (Moscow). E-mail: merdanov@rambler.ru S.G. Evteev - Post-graduate Student, Department of Solid-State Physics, Saratov State University named after N.G. Chernyshevsky. E-mail: cepr_321@mail.ru
Abstract:
A new type of microwave photonic crystal based on periodically arranged resonance diaphragms was proposed. Each diaphragm is made in the form of the metallization layer with the gap deposited on the dielectric substrate with the gap whose dimensions match the dimensions of the gap in the metallization layer. Numerical simulation of the amplitude-frequency characteristics of the proposed microwave photonic crystals based on resonance diaphragms using the finite element method in the CAD ANSYS HFSS was carried out. It is shown that the amplitude-frequency characteristics of the investigated microwave photonic crystals based on resonance diaphragms on dielectric substrates have a band structure. The influence of the parameters of the dielectric substrates on the characteristics of the photonic crystal was analyzed. The amplitude-frequency characteristics of the photonic crystal based on periodically arranged diaphragms in the form of the apertures in dielectric substrates with the defect in the form of changing distance between central diaphragms were experimentally investigated. It is established that the creation of the defect leads to the appearance of the transmission peak in the band gap and increase of its width. The feature in the allowed bands of the amplitude-frequency characteristics of the photonic crystals based on resonance apertures was discovered. The amplitude-frequency characteristics of the photonic crystals based on diaphragms without the dielectric substrate and with the dielectric substrate with the aperture demonstrate flat form as against the amplitude-frequency characteristics of the photonic crystals based on diaphragms with a solid dielectric substrate, characterized by the presence of pronounced transmission peaks. Comparison of the experimental data with the results of numerical simulation indicates their good quantitative agreement.
Pages: 108-114
References

 

  1. Usanov D.A., Skripal A.V., Abramov A.V., Bogoljubov A.S. Izmerenija tolshhiny nanometrovykh sloev metalla i ehlektroprovodnosti poluprovodnika v strukturakh metall-poluprovodnik po spektram otrazhenija i prokhozhdenija ehlektromagnitnogo izluchenija // ZHTF. 2006. T. 76. № 5. S. 112−117.
  2. CHaplygin JU.A., Usanov D.A., Skripal Al.V., Skripal An.V., Semjonov A.A., Abramov A.V., Golishnikov A.A. Radiovolnovye i opticheskie izmerenija tolshhiny i ehlektroprovodnosti metallicheskikh plenok na poluprovodnikovykh i diehlektricheskikh podlozhkakh // Izvestija VUZov. EHlektronika. 2005. № 1. S. 68−77.
  3. CHaplygin JU.A., Usanov D.A., Skripal A.V., Abramov A.V., Bogoljubov A.S. Metodika izmerenija ehlektroprovodnosti nanometrovykh metallicheskikh plenok v sloistykh strukturakh po spektram otrazhenija ehlektromagnitnogo izluchenija // Izvestija VUZov. EHlektronika. 2006. № 6. S. 27−35.
  4. Kuriazidou C.A., Contopanagos H.F., Alexopolos N.G. Monolithic waveguide filters using printed photonic-bandgap materials // IEEE Transactions on microwave theory and techniques. 2001. V. 49. № 2. P. 297−306.
  5. Beljaev B.A., Voloshin A.S., SHabanov V.F. Issledovanie mikropoloskovykh modelejj polosno-propuskajushhikh filtrov na odnomernykh fotonnykh kristallakh // Doklady RAN. 2005. T. 403. № 3. S. 319 − 324.
  6. Mukhortov V.M., Masychev S.I., Mamatov A.A., Mukhortov V.M. EHlektricheski perestraivaemyjj fotonnyjj kristall na osnove koplanarnogo volnovoda s nanorazmernojj segnetoehlektricheskojj plenkojj // Pisma v ZHTF. 2013. T. 39. № 20. S. 70−76.
  7. Usanov D.A., Skripal A.V., Abramov A.V., Bogoljubov A.S., Kulikov M.JU., Ponomarev D.V. Mikropoloskovye fotonnye kristally i ikh ispolzovanie dlja izmerenija parametrov zhidkostejj // ZHTF. 2010. T. 80. № 8. S. 143−148.
  8. Morozov G.A., Morozov O.G., Nasybulin A.R., Sevastjanov A.A., Farkhutdinov A.R. Koaksialnye Brehggovskie SVCH-struktury v sensornykh sistemakh // Fizika volnovykh processov i radiotekhnicheskie sistemy. 2014. T. 17. № 3. S. 65−70.
  9. Silin R.A., Sazonov V.P. Zamedljajushhie sistemy. M.: Sov. radio. 1966. 631 s.
  10. Cohn S.B. Direct-coupled-resonator filters. Proc. IRE. 1957. V. 45. Feb. P. 187−196.
  11. Ozbay E., Temelkuran B., and Bayindir M. Microwave applications of photonic crystals // Progress in Electromagnetics Research. 2003. V. 41. P. 185−209.
  12. Burns G.W.,Thayne  I.G., Arnold J.M. Improvement of Planar Antenna Efficiency When Integrated With a Millimetre-Wave Photonic // Proc. of European Conference on Wireless Technology. Amsterdam. Netherlands. 11−12 thOctober 2004. P. 229−232.
  13. Hsien-Shun Wu, Ching-Kuang C. Tzuang Miniaturized High­Gain Synthetic Rectangular Waveguide Antenna of Near-Omnidirectional Radiation // Proc. of 34rd European Microwave Conf. Amsterdam. Netherlands, 12−14 October 2004. V. 2. P. 1189−1192.
  14. Usanov D.A., Gorbatov S.S., Kvasko V.JU., Fadeev A.V. Blizhnepolevojj SVCH-mikroskop dlja opredelenija anizotropnykh svojjstv diehlektricheskikh materialov // Pribory i tekhnika ehksperimenta. 2015. № 2. S. 77−83.