350 rub
Journal Radioengineering №9 for 2014 г.
Article in number:
Model of process of an optical location of optical-electronic means with dynamic reflecting properties
Authors:
V.V. Butuzov - First Assistant to the General Director − the Main Designer of the Scientifically Research Institute «Ekran»
A.A. Dontsov - Ph.D. (Eng.), Candidate for a Doctors Degree of Military Air Forces «Military Aviation Academy named for prof. N.E. Zhukovsky and J.A. Gagarin» (Voronezh)
Yu.L. Koziratsky - Dr.Sci. (Eng.), the Professor of Chair of Military education-research center of Military Air Forces «Military Aviation acAdemy named for prof. N.E. Zhukovsky and J.A. Gagarin» (Voronezh)
Abstract:
With use of basic provisions of radio optics and Fourier optics the mathematical model of process of an optical location of optical-electronic means with the dynamic reflecting properties, considering the mutual spatial provision of a source of optical radiation and object of a location, parameters of the environment of distribution and existential characteristics of the modulator of the optical radiation (banner) as nonlinear reflecting element is developed. The model allows to investigate dependences of structure and parameters of the reflected optical radiation for obtaining identifying information on type of optical-electronic cure, its current state and characteristics. It is shown that process of distribution of optical radiation in the optical cascade of optical-electronic means can be presented by the equivalent scheme which basic elements expressed through generalized function of Fresnel, allow to consider reflection of optical radiation from the receiver and the modulating environment (banner). The analytical expressions, allowing to count the complex amplitude of the field reflected from optical-electronic means, in the plane of the receiver of optical radiation are received. The special attention is paid to the generalized description of modulating function of a banner, is the fullest reflecting unique reflective properties of located optical-electronic means. Calculations of distribution of the module of amplitude of a field are carried out to the planes of an entrance aperture of optical-electronic means, a banner and in the focal plane of a lens, and also temporary dependence of the optical radiation of the reflected signal registered by the receiver for a banner with the set existential structure. The received results correspond to the standard laws of wave optics and will well be coordinated with known experimental data.
Pages: 61-67
References

  1. Koziraczkij Ju.L., Juxno P.M. Sintez opticheskix pomex // Radiotexnika. 2000. № 8. S. 4-11.
  2. Sovremennaya radioe'lektronnaya bor'ba. Voprosy' metodologii / pod red. V.G. Radzievskogo. M.: Radiotexnika. 2006. 424 s.
  3. Koziraczkij Ju.L., Popelo V.D. Metody' e'ksperimental'nogo issledovaniya xarakteristik otrazheniya optiko-e'lektronny'x sredstv / Nauchno-metodicheskie materialy'. 5 CNIII MO RF. 1998. 186 s.
  4. Popelo V.D. Model' optiko-e'lektronnogo sredstva kak ob''ekta opticheskoj lokaczii. // Radiotexnika. 2005. № 7. S. 102-104.
  5. Fel'dman G.A. Raschet i vy'bor opticheskix e'lementov geodezicheskix priborov. M.: Nedra. 1973. 224 s.
  6. Lazarev L.P. Optiko-e'lektronny'e pribory' navedeniya. M.: Mashinostroenie. 1989. 512 s.
  7. Litvinenko O.N. Osnovy' radiooptiki. K.: Texnika. 1974. 208 s.
  8. Ry'tov S.M., Kravczov Ju.A., Tatarskij V.I. Vvedenie v statisticheskuyu radiofiziku. Chast' II. Sluchajny'e polya. M.: Nauka. 1978. 464 s.
  9. Tatarskij V.I. Rasprostranenie voln v turbulentnoj atmosfere. M.: Nauka. 1967. 548 s.
  10. Matveev I.N., Protopopov V.N., Troiczkij V.N., Ustinov N.D. Lazernaya lokacziya / pod red. chl.-korr. AN SSSR N.D. Ustinova. M.: Mashinostroenie. 1984. 272 s.
  11. Zuev V.E. Rasprostranenie lazernogo izlucheniya v atmosfere. M.: Radio i svyaz'. 1982. 288 s.
  12. Zverev V.A. Radiooptika. M.: Sov. radio. 1975. 304 s.
  13. Primenenie metodov Fur'e-optiki / pod red. G. Starka. M.: Radio i svyaz'. 1988. 535 s.
  14. Gudmen Dzh. Statisticheskaya optika. M.: Mir. 1988. 528 s.
  15. Soroko L.M. Osnovy' golografii i kogerentnoj optiki. M.: Nauka. 1971. 616 s.
  16. Matveev A.N. Optika. M.: Vy'ssh. shk. 1985. 351 s.
  17. Cooley J.W., Tukey J.W. An Algorithm for the Machine Computation of the Complex Fourier Series // Mathematics of Computation. 1965. V. 19. April. P. 297-301.
  18. Duhamel P., Vetterli M. Fast Fourier Transforms: A Tutorial Review and a State of the Art // Signal Processing. 1990. V. 19. April. P. 259-299.