350 rub
Journal Radioengineering №9 for 2014 г.
Article in number:
Imitative model of dispersion laser radiations in the environment with non-uniform density of particles of a software to the propagation channel
Authors:
Yu.L. Koziratsky - Dr.Sci. (Eng.), Professor of Chair, Military Education-Research Center of Military Air Forces «Military Aviation Academy named for prof. N.E. Zhukovsky and Yu.A. Gagarin» (Voronezh)
D.V. Prokhorov - Ph.D. (Eng.), Senior Lecturer of Chair, Military Education-Research Center of Military Air Forces «Military Aviation Academy named for prof. N.E. Zhukovsky and Yu.A. Gagarin» (Voronezh)
O.V. Kusakin - Ph.D. (Eng.), Teacher of Chair, Military Education-Research Center of Military Air Forces «Military Aviation Academy named for prof. N.E. Zhukovsky and Yu.A. Gagarin» (Voronezh)
A.V. Kusakin - Ph.D. (Eng.), Senior Teacher of Chair, Military Education-Research Center of Military Air Forces «Military Aviation Academy named for prof. N.E. Zhukovsky and Yu.A. Gagarin» (Voronezh)
P.E. Kuleshov - Ph.D. (Eng.), Chief of the Research Department of the Research Centre of Military Education-Research Center of Military Air Forces «Military Aviation Academy named for prof. N.E. Zhukovsky and Yu.A. Gagarin» (Voronezh)
Abstract:
The imitative model of dispersion of the laser radiation is developed, allowing to define statistical characteristics of value of intensity of the absent-minded radiation arriving on an input of the prospecting receiver, for various states of atmosphere. The model is based on representation of the dispersing environment in the elementary volumes containing casual value of concentration of particles (N), submitting to the law of the Poisson. In turn the sizes of particles ri represent random variables which submit to the continuous law of allocation. In the course of simulation modeling depending on concentration of particles N in the elementary volume and according to the law of allocation of number of particles in the sizes a row of values of the sizes of particles according to which values of coefficients of dispersion and indicatrix of dispersion of each of particles are defined is formed. In the assumption that the radiation dispersed from everyone particle is additive among themselves and background (interfering) radiation, adding the received values of coefficients of dispersion and indicatrix of dispersion of particles, considering the sizes of the elementary volume, we receive value of volume coefficient of dispersion and indicatrix of dispersion of this volume. The values of volume coefficient of dispersion received as a result of simulation modeling and dispersion indicatrix are included into the equation of calculation of intensity of the absent-minded radiation arriving on an input of the prospecting receiver. The coordination received statistical and theoretical allocations with criterion usage «χ2» Pirsona is led.
Pages: 55-60
References

  1. Koziraczkij Ju.L., Proxorov D.V., Kusakin O.V. Povy'shenie e'ffektivnosti obxodnoj lazernoj linii svyazi za schet adaptivnogo upravleniya moshhnost'yu izlucheniya peredatchika // Radiotexnika. 2009. № 5. S. 111-114.
  2. Algazinov E'.K., Koziraczkij Ju.L., Kusakin O.V., Kusakin A.V. Komp'yuternaya model' proczessa nesankczionirovannogo s''ema informaczii, peredavaemoj po vozdushny'm lazerny'm liniyam svyazi // Materialy' XI mezhdunarodnoj NTK «Informatika: Problemy', metodologiya, texnologii». Voronezh. 10-11 fevralya 2011. Voronezh: VGU. 2011. T. 1. S. 23-27.
  3. Zuev V.E., Kabanov V. Perenos opticheskix signalov v zemnoj atmosfere (v usloviyax pomex). M.: Sov. radio. 1977. 368 s.
  4. Gal'yardi R.M., Karp Sh. Opticheskaya svyaz'. M.: Svyaz'. 1978.
  5. Zuev V.E. Rasprostranenie vidimy'x i infrakrasny'x voln v atmosfere. M.: Sov. radio. 1970. 494 s.
  6. Shifrin K.S. Rasseyanie sveta v mutnoj srede. M.: Gos. izd. texniko-teoreticheskoj literatury'. 1951. 288 s.
  7. Ry'sakov V., Ston' M. Rasseyanie sveta vzves'yu chasticz. Predel'ny'e vozmozhnosti opredeleniya parametrov vzvesi metodom rasseyaniya sveta // Optika i spektroskopiya. 1997. T. 82. № 2. S. 305-309.
  8. Ry'sakov V., Ston' M. Rasseyanie sveta vzves'yu chasticz. Rasseyanie sveta gaussovy'm e'llipsoidom // Optika i spektroskopiya. 1997. T. 82. № 1. S. 77-85.
  9. Shtorm R. Teoriya veroyatnostej. Matematicheskaya statistika. Statisticheskij kontrol' kachestva. M.: Mir. 1970. 368 s.
  10. Ventczel' E.S. Teoriya veroyatnostej: Uchebnik dlya stud. vuzov. 9-e izd., ster. M.: Izd. czentr «Akademiya». 2003. 576 s.