350 rub
Journal Radioengineering №7 for 2014 г.
Article in number:
Questions of interpretation radar images at microwave imaging
Authors:
P.V. Denisov - Research Center for Earth Operative Monitoring. E-mail: denisov@ntsomz.ru
S.E. Zaytsev - Ph.D. (Eng.), Joint Stock Company «Military Industrial Corporation «NPO Mashinostroyenia». E-mail: mailto:ZaiSergei@mail.ru
Е.A. Коstyuк - Ph.D. (Eng.), Research Center for Earth Operative Monitoring. Е- mail: kostiuk@inbox.ru
E.F. Tolstov - Dr. Sci. (Eng.), Professor, Head of Department of «Aerocon» company. E-mail: e_tolstov@mail.ru
O.E. Tsvetkov - Ph.D. (Eng.) JSC «Corporation Phazotron - NIIR». E-mail: al.vetckov@yandex.ru
Abstract:
Мicrowave imaging can be defined as observation of objects in the microwavesrange of the electromagnetic spectrum while optical systems are operated in the visible and infrared range. Active microwave remote sensing technology as Synthetic Aperture Radar (SAR),air, ground and space-based can achieveultra-high (better than 1 m) resolution. Мicrowave imaging systems enable to obtain images regardless of weather conditions and sun lighting at a significant distance and over a wide area. Along with military tasks (intelligence, guidance precision weapons, landing , navigation) microwave imaging systems are used for cartographic works, engineering and geological exploration, determine ice conditions , mapping of vegetation and snow cover , ocean surface wave measurement, oil spills detection, pollution and traces of ships on the water surface, operational control of emergencies, as well as for many other missions. In all instances the objects recognition accuracy,detail and reliability in microwave imaging is better thanthat ofusualradar systems. Examples of microwave imaging systems are SAR spaceborne systems («Lacrosse», «SAR-Lupe», «COSMO-SkyMed», «TerraSAR», «Condor-E»), UAV-borne («TESAR», «Lynx»,«MiniSAR»), as well as several modes of military aircraft (AN/APG-77, AN/APG-81). To implement opportunities of microwave imaging,radar system must meet certain requirements: 1) The hardware is carefully configured and correctly functioning; 2) Algorithms and the software are optimized for the microwave imaging characteristics; 3) Precision ballistic and navigation support is implemented. The process of obtaining and processing of radar images is quite difficult for untrained users. One of the main problemis significant difference in visual properties of radar images compared with images in the optical spectral range. In addition, because of the using of coherent signal radar image has a granular structure or speckle noise. Specificity of radar image is particularly evident with man-made objects, complex in their structure and made of materials with different reflective properties. The objects may appear as bright points, the signal amplitude of which may cover the entire dynamic range of the radar system. Size, shape and configuration of tall objectsisalso distorted. Such parameters as texture, brightness, contrast of objects on radar images is almost completely different from the corresponding optical images and depend on the incidence angle, configuration of the radar system and many other conditions. For interpretation of radar images shadows, spatial resolution and the value of the noise equivalent power are especially important. The article shows the possibility of visual recognition from microwave imagery of tanks including the definition of the type and class. Also the dependence of radar images visual quality from the noise equivalent power is showed. Presentedquantitative estimations of interpretation, a plot of probability recognitionof the object from the number of resolution elements in the area of the object.It is found that the nomenclature of detected objects rapidly increases at improving the resolution from 10 to 5 m (40 %) recognition of the class - from 3 to 1 m (35 %), and recognitionof the type - from 3 m to 30 cm (73 %). Currently new radar technologies and data processing are rapidly developing: polarimetric SAR processing, coherent detection technology, radar data fusion with optical data. The development of such technologies and the microwave imagingmakes necessary special training of operators on the interpretation of radar images.
Pages: 7-14
References

 

  1. Kondratenkov G.S., Frolov A.Ju. Radiovidenie. Radiolokaczionny'e sistemy' distanczionnogo zondirovaniya Zemli. Uchebnoe posobie dlya vuzov / pod red. G.S. Kondratenkova. M.: Radiotexnika. 2005. 368 s.
  2. Sablin V.N. Razvedy'vatel'no-udarny'e kompleksy' i radiolokaczionny'e sistemy' nablyudeniya zemnoj poverxnosti. M.: IPRZhR. 2002. 182 s.
  3. Radiolokaczionny'e sistemy' zemleobzora kosmicheskogo bazirovaniya / pod obshhej red. V.S. Verby'. M.: Radiotexnika. 2010. 680 s.
  4. Resursy' Interneta: http://www.astrium-geo.com/en/5612-uncover-inaccessible-details.
  5. Osipov I.G., Neronskiy L.B., Turuk V.E., Andrianov V.I., Verba V.S., Korolev A.V., Kulikovsky M.G., Pushkov D.V., Janushevsky G.D., Feyzulla N.M., Panteleev V.A. Synthetic Aperture Radar for Earth and Sea Surface Observations // Proc. of EUSAR'2004. Ulm. Germany. May 24-28. 2004. V. 1. P. 59‑62.
  6. Osipov I.G., Neronskiy L.B., Andrianov V.I., Verba V.S., Kozlov K.V., Kurenkov V.N., Pushkov D.V. Calculated Performance of SAR for High Orbit Spacecraft Using Nuclear Power Supply // Proc. of EUSAR'2006. Dresden. Germany. May 16-18. 2006.
  7. Neronskij L.B. Perspektivy' razvitiya metodov i sistem radiolokaczionnogo nablyudeniya kosmicheskogo bazirovaniya // Zhurnal radioe'lektroniki. 2011. № 11.
  8. Nauchny'e shkoly' fakul'teta radioe'lektronnogo oborudovaniya // Radiotexnika. 2012. № 10.
  9. Jarly'kov M.S. Primenenie markovskoj teorii nelinejnoj fil'traczii v radiotexnike. M.: Sov. radio. 1980. 358 s.
  10. Jarly'kov M.S., Mironov M.A. Markovskaya teoriya oczenivaniya sluchajny'x proczessov. M.: Radio i svyaz'. 1993.
  11. Tixonov V.I., Xarisov V.N. Statisticheskij analiz i sintez radiotexnicheskix ustrojstv i sistem. M.: Radio i svyaz'. 2004.
  12. Sputnikovy'e radionavigaczionny'e sistemy'. Vy'p. 1. Kollektivnaya monografiya / Pod red. M.S. Jarly'kova. M.: Radiotexnika. 2013. 190 s.
  13. Sputnikovy'e radionavigaczionny'e sistemy'. Vy'p. 2. Kollektivnaya monografiya / pod red. M.S. Jarly'kova. M.: Radiotexnika. 2013. 180 s.
  14. Kondratsnkov G.S., Potexin B.L., Reutov A.P., Feoktistov Ju.A. Radiolokaczionny'e stanczii obzora zemli / pod red. G.S. Kondratenkova. M.: Radio i svyaz'. 1983. 272 c.
  15. Radiolokaczionny'e sistemy' vozdushnoj razvedki. Deshifrirovanie radiolokaczionny'x izobrazhenij / pod red. L.A. Shkol'nogo. M.: Izd. VVIA im. N.E. Zhukovskogo. 2008. 531 s.
  16. Ob''ekty' radiolokaczii. Obnaruzhenie i raspoznavanie. Kollektivnaya monografiya / pod red. A.V. Sokolova. M.: Radiotexnika. 2006. 176 s.
  17. Obnaruzhenie, raspoznavanie i opredelenie parametrov obrazov ob''ektov. Metody' i algoritmy' / pod red. A.V. Korennogo. M.: Radiotexnika». 2012. 112.
  18. Resursy' Interneta: http://defense-update.com/products/t/tesar.htm.
  19. Zaxarov V.D., Tolstov E.F., Chetverik V.N. Oczenka shumovogo e'kvivalenta i radiometricheskogo razresheniya RSA po metodu differenczial'nogo radiokontrasta // Radiopromy'shlennost'. 2011. Vy'p. 4. S. 110-121.
  20. Resursy' Interneta: http://www.sandia.gov/radar/imagery.html.
  21. Microwave // J. 1984. № 12.
  22. Shirman Ja.D., Orlenko V.M. Tendenczii povy'sheniya radiolokaczionnogo razresheniya. Prilozhenie k zhurnalu «E'lektromagnitny'e volny' & e'lektronny'e sistemy'» // Kosmicheskaya radiofizika. 1998. Vy'p. 3.
  23. Rlemm R. Current Trends in SAR Technology (conference report: EUSAR-96), Systems. 1997. № 3.
  24. Nikol'skij D.B. Oblasti primeneniya radiolokaczionny'x danny'x. GEOMATICS. 2008. № 1.
  25. Obiralov A.I. Deshifrirovanie snimkov dlya czelej sel'skogo xozyajstva. M.: Nedra. 1982. 144 s.
  26. Resursy' Interneta: http://www.astrium-geo.com/en/5612-uncover-inaccessible-details
  27. Lavrova O.Ju., Mityagina M.I., Karmanova S.S., Bocharova T.Ju. Primenenie radiolokatorov RADARSAT-2 i TerraSAR dlya issledovaniya gidrodinamicheskix proczessov v okeane // Sovremenny'e problemy' zondirovaniya Zemli iz kosmosa. 2012. T. 9. № 2. S. 312-323.