350 rub
Journal Radioengineering №4 for 2014 г.
Article in number:
Broadband pulsed Ka-band gyro-TWT with helically corrugated waveguide
Authors:
S.V. Samsonov - Ph.D., Head of Laboratory, Institute of Applied Physics (IAP) of Russian Academy of Sciences (RAS), Nizhny Novgorod
I.G. Gachev - Ph.D., Senior Research Associate, IAP
G.G. Denisov - Corr. Member of RAS, Head of Department, IAP
A.A. Bogdashov - Ph.D., Research Associate, IAP
S.V. Mishakin - Ph.D., Research Associate, IAP
A.Sh. Fiks - Ph.D., Senior Research Associate, IAP
E.A. Soluyanova - Ph.D., Head of Department, Company «Gikom», Nizhny Novgorod Branch E.M. Tay - Ph.D., Director, Company «Gikom», Nizhny Novgorod Branch
Ya.V. Dominyuk - Head of Division, JSC «Radiofizika»
V.N. Murzin - Head of Laboratory, JSC «Radiofizika»
B.A. Levitan - Ph.D., General Director, JSC «Radiofizika»; Head of Department of Radio-Physics and Technical Cybernetics, Moscow Institute of Physics and Technology; Head of Department 909 "Mechanical Design of Antenna-Feeder Systems, Moscow Aviation Institute
Abstract:
Experimental results on a gyro-TWT with a helically corrugated waveguide are presented. As compared to previous similar experiments, a configuration with single-stage electron beam energy recovery was realized which enabled considerable enhancement of the amplifier efficiency. The gyro-TWT is designed to operate in a pulse-periodic regime with pulse width of up to 250 us, duty factor of 8 and average output power up to 15 kW. Up to now due to functional limitation of a test stand, the experiments were performed at duty factor of about 1000 (pulse width of about 100 us with repetition frequency of 10 Hz). A system of non-superconducting coils with intensive liquid cooling is used to produce the necessary magnetic field. In the optimal operating regime the voltages of a main and a low-current recovery power supplies amounted to 45 kV and 25 kV, respectively, when the beam current was 10 A. As a result, at parameters corresponding to maximal output power stable amplification with power of 130-160 kW within frequency interval of 33.1-34.8 GHz was obtained while at the parameters corresponding to wider bandwidth the output power amounted to 100-130 kW for frequencies from 33.2 GHz to 35.5 GHz at the input power of 1-2.5 kW delivered from a conventional TWT chain.
Pages: 104-112
References

  1. Relyativistskaya vy'sokochastotnaya e'lektronika. Sbornik statej / pod red. A.V. Gaponova-Grexova. Gor'kij. IPF AN SSSR. 1979.
  2. Litvak A.G., Denisov G.G., Agapova M.V., Myasnikov V.E., Popov L.G., Tai E.M., Usachev S.V., Zapevalov V.E., Chirkov A.V., Ilin V.I., Kuftin A.N., Malygin V.I., Sokolov E.V., Solyanova E.A. Development in Russia of 170 GHz gyrotron for ITER, Proc. 36th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2011), 2011, Houston, TX, USA, Th2A.1.
  3. Gaponov A.V. Vozbuzhdenie linii peredachi nepryamolinejny'm e'lektronny'm puchkom // Izv. vuzov. Ser. Radiofizika. 1959. T. 2. № 3. S. 443.
  4. Gaponov A.V., Petelin M.I., Julpatov V.K. Induczirovannoe izluchenie vozbuzhdenny'x klassicheskix osczillyatorov i ego ispol'zovanie v vy'sokochastotnoj e'lektronike // Izv. vuzov. Ser. Radiofizika. 1967. T. 10. № 9-10. S. 1414.
  5. Chu K.R., Chen H.Y., Hung C.L., Chang T.H., and Barnett L.R. Ultrahigh-gain gyrotron traveling wave amplifier // Phys. Rev. Lett. 1998. V. 81. P. 4760-4763.
  6. Garven M., Calame J.P., Danly B.G., Nguyen K.T., Levush B., Wood F.N., Pershing D.E. A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region // IEEE Trans. Plasma Sci., Jun. 2002. V. 30. № 3. P. 885-893.
  7. Pershing D.E., Nguyen K.T., Calame J.P., Danly B.G., Levush B., Wood F.N., Garven M. A TE11 Ka-band Gyro-TWT amplifier with high-average power compatible distributed loss // IEEE Trans. Plasma Sci. Jun. 2004. V. 32. № 3. P. 947-956.
  8. Wang H., Li H., Luo Y., Yan R. Theoretical and Experimental Investigation of a Ka-band Gyro-TWT with Lossy Interaction Structure // J. Infrared Milli Terahz Waves. Feb. 2011. V. 32. № 2. P. 172-185.
  9. Liu B., Feng J., Wang E., Li Z., Xu Zeng, Qian L., Wang H. Design and Experimental Study of a Ka-band Gyro-TWT With Periodic Dielectric Loaded Circuits // IEEE Trans. Plasma Sci. Aug. 2011. V. 39. № 8. P. 1665-1672.
  10. www.haystack.mit.edu
  11. Blank M., Borchard P., Cauffman S., Felch F. W-band gyro-amplifiers at Haystack Ultra-Wide Satellite Imaging Radar // in digest of joint 32nd Int. conf. on IR and MM Waves and 15th Int. conf. on THz Electronics. Cardiff. UK. 2007. P. 364-366.
  12. Denisov G.G., Cooke S.J. New microwave system for gyro-TWT. // Digest 21st Int. conf. infrared and millimeter waves (Berlin, Germany, 1996, ed. by M. von Ortenberg and H.-U. Mueller). P. AT2.
  13. Denisov G.G., Bratman V.L., Cross A.W., He W., Phelps A.D.R., K Ronald., Samsonov S.V. and Whyte C.G. Gyrotron traveling wave amplifier with a helical interaction waveguide // Physical. Review Letters. 1998. V. 81. № 25. P. 5680.
  14. Bratman V.L., Cross A.W., Denisov G.G., He W., Phelps A.D.R., Ronald K., Samsonov S.V., Whyte C.G., Young A.R. High-Gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide // Phys. Rev. Letts. 2000. V. 84. № 12. P. 2746-2749.
  15. Samsonov S.V., Bratman V.L., Denisov G.G. et al. Broadband Gyro-TWTs and Gyro-BWOs with helically rippled waveguides // in Proc. of 5th Int. Workshop «Strong Microwaves in Plasmas». Nizhny Novgorod. Russia. 2002. P. 46-61.
  16. Bratman V.L., Denisov G.G., Samsonov S.V., Kross A.U., Felps A.D.R., Xe V. Vy'sokoe'ffektivny'e shirokopolosny'e giro-LBV i giro-LOV so spiral'no-gofrirovanny'mi volnovodami // Izv. vuzov. Ser. Radiofizika. 2007. T. 50. № 2. S. 104.
  17. Samsonov S.V., Bratman V.L., Denisov G.G., Gachev I.G., Glyavin M.Yu. and Manuilov V.N. Gyro-TWTs and Gyro-BWOs with helically corrugated waveguides // The Joint 32nd International conference on Infrared and millimetre waves and 15th international conference on terahertz electronics. Cardiff. UK. September 2-7, 2007, Conf. Digest Ed. by M.J. Griffin, P.C. Hargrave, T.J. Parker, K.P. Wood. P. 578-581.
  18. Samsonov S.V., Denisov G.G., Gachev I.G., Eremeev A.G., Fiks A.S., Holoptsev V.V., Kalynova G.I., Manuilov V.N., Mishakin S.V., Sokolov E.V. CW Ka-band kW-level helical-waveguide gyro-TWT // IEEE Transactions on electron devices, 2012. V. 59. № 8. P. 2250 - 2255.