350 rub
Journal Radioengineering №2 for 2014 г.
Article in number:
Prediction propagation indoors using the SVM
Authors:
V. A. Ivanov - Dr.Sci. (Eng.), Professor
I. V. Marchenko
I. V. Marchenko
Abstract:
In this article we consider the problem of forecasting the spread of radio waves. The model is based on the method of support vector, kernel parameters chosen for the prediction made by the model calculations, carried out the actual measurements and estimated the error of prediction. The conclusion of admissibility SVM method for predicting the electromagnetic fields in a frequency of 2100 MHz.
Pages: 73-75
References
- Gavrilenko V.G., Jashnov V.A. Rasprostranenie radiovoln v sovremenny'x sistemax mobil'noj svyazi. Nizhnij Novgorod: Nizhegorodskij gosudarstvenny'j universitet im. N.I. Lobachevskogo. 2003. 148 s.
- Il'inskij A.S., Kravczov V.V., Sveshnikov A.G. Matematicheskie modeli e'lektrodinamiki: Ucheb. posobie dlya vuzov. M.: Vy'ssh. shk. 1991. 224 s.
- Przemyslaw M. 3D Wireless Networks Simulator - visualization of Radi Frequency propagation for WLANs // A dissertation submitted to the University of Dublin, Trinity College, for the degree of Master of Science in Computer Science. May 2006.
- MSE'-R P.1238-7 Danny'e o rasprostranenii radiovoln i metody' prognozirovaniya dlya planirovaniya sistem radiosvyazi vnutri pomeshhenij i lokal'ny'x zonovy'x radiosetej v chastotnom diapazon 900 MGcz-100 GGcz. ITU. 2012. 26 s.
- Ashagrie G.F. Optimizing the Existing Indoor Propagation Prediction Models // International Conference on Wireless Networks (ICWN 2012) IPCSIT. Singapore: IACSIT Press. 2012. V. 49. R. 202-207.
- Xiaonan Z.A. NEW SVM-Based Modeling Method of Cabin Path Loss Prediction [E'lektronny'j resurs] / Xiaonan Zhao, Chunping Hou, and Qing Wang // International Journal of Antennas and Propagation / Hindawi Publishing Corporation. April 2013. Rezhim dostupa: www.hindawi.com/journals/ijap /2013/279070/, svobodny'j. Zaglavie s e'krana.
- Dvojris L.I., Luczenko D.V., Gerashhenkov V.A. Mashiny' oporny'x vektorov v zadachax raspoznavaniya obrazov: Uchebno-metodicheskoe posobie. Kaliningrad. 2013. 140 s.