350 rub
Journal Radioengineering №11 for 2014 г.
Article in number:
Simulation of mechanical characteristics radioelectronic modules third level
Authors:
P.V. Ievlev - student of department chair design and manufacture of radio, Voronezh State Technical University. E-mail: ievlev92@mail.ru
A.I. Klimov - Dr. Sc. (Eng.), professor of the chair of info communication systems and technologies of Voronezh Institute of the Interior of Russia. E-mail: kipr@vorstu.ru
A.V. Muratov - Dr.Sc. (Eng.), professor of design and production of radio, Voronezh State Technical University
Yu.V. Sidorov - Dr.Sc. (Eng.), JSC «Sozvezdie» Concern»
A.V. Turetsky - Ph.D. (Eng.), senior lecturer, designing and manufacture radio equipment chairs of the Voronezh state technical university. E-mail: tav7@mail.ru
Abstract:
For example, it was modeled behavior of cabinet design, the frame is made of a standard profile, and the whole structure is sheathed with sheets. Consider several types of analysis: modal, dynamic impact, static As a result, modal analysis, the following were possible natural frequencies: 6, 4 Hz (vibrations along the front of the rack); 10, 62 Hz (torsion rack); 12.3 Hz (vibrations stand along the side); 20.04 Hz (natural frequency of vibration of the carrier rack vertical columns). As a result of the dynamic impact analysis revealed that the greatest stresses occur at the contact points of the vertical columns and the lower base stand (legs are fixed). Near the top of the base stress values less. Spotted vulnerability constructed resistant to impact force in the horizontal plane, compared to the impact in the vertical plane. When this occurred the stress less than the limits for steel and are not critical. Blow along the spatial diagonal for this design is not valid, as arising in this case are close to the critical stress. Static load is modeled on the horizontal rails, serve to organize a rack-optimized lower level modules (plug-in power towers). Thus, the stability of engineered structures shown to the static effects on rails, serve to organize rack modules of the second level. Based on the results of the stability of rack design, the underlying electronic structure of the cabinet, to static and dynamic loads, it is concluded that there is no need to optimize the cabinet, as the load does not exceed the tensile strength of the material. Featured modeling process is advantageously carried out in the design of electronic modules in the third level, as it allows you to identify nodes that represent a potential threat to the structural integrity violations. In the traditional approach to design problems can be identified only at the final testing.
Pages: 37-40
References

  1. GOST R51623-2000. Konstrukczii bazovy'x nesushhix radioe'lektronny'x sredstv. M.: Gosstandart Rossii: Izd-vo standartov. 2000. 70 s
  2. Nenashev A.P. Konstruirovanie radioe'lektronny'x sredstv. M.: Vy'sshaya shkola. 1996. 432 s.
  3. Podval'ny'j S.L., Ledeneva T.M. Intellektual'ny'e sistemy' modelirovaniya: princzipy' razrabotki // Sistemy' upravleniya i informaczionny'e texnologii. 2013. T. 51. № 1. S. 4-10.
  4. Lozovoj I.A., Tureczkij A.V., Makarov O.Ju., Sizov S.Ju. Sredstva avtomatizirovannogo proektirovaniya i analiza mexanicheskix i teplovy'x proczessov konstrukczij RE'S // Vestnik VGTU. 2010. T. 6. № 5. S. 4-6.
  5. Makarov O.Ju., Titov V.P., Tureczkij A.V. Algoritm analiza pechatny'x plat na mexanicheskuyu prochnost' // Radiotexnika. 2013. № 12. S. 62-65.
  6. Lozovoj I.A., Tureczkij A.V., Makarov O.Ju., Sizov S.Ju., Boby'lkin I.S. Primenenie programmnogo kompleksa PRO| ENGINEER MECHANICA dlya modelirovaniya mexanicheskix vozdejstvij na radioe'lektronny'e moduli // Vestnik VGTU. 2010. T. 6. № 6. S. 34-36.