350 rub
Journal Radioengineering №4 for 2013 г.
Article in number:
The bondary spectral functions application for definition of regularization parameter in correction of autoregressive spectral estimates
Keywords:
correlation matrix disturbance-s
equation system conditionality
superresolution
regularization
gain nonidentity
spatial frequency
mean smoothing error functional
pseudo-ideal weght wector
profile weght wector
boundary spectral function
linear prediction
Authors:
D.S. Grigoryan
Abstract:
At the decision of signals processing problems in radio engineering systems the signals superresolution necessity on space and adaptation of adaptive antenna arrays forces to search for methods of analysis of the spectral estimates resolution in the set conditions of supervision of a signal depending on indignations of a vector of the weight factors arising owing to presence of noise and processing channels disturbances.
For analytical definition of indignations weight vector area border at which the superresolution takes place, it is possible to search for interrelation of indignations weight with spectral function. For definition of indignations border interrelation and spectral function it is offered to use so-called boundary spectral functions.
In a case when received by criterion of a minimum least square error vectors of weight factors don\'t provide the superresolution of signals that system of the equations of a linear prediction is possible to correct. One of approaches to the correction of system equations of a linear prediction is use of criterion of minimum of an average square of norm smoothing функционала the errors, defined by a profile vector of weight factors. Thus as a profile vector is possible to choose pseudo-ideal weight vector, defined in the parameters close to the measured. It is necessary to consider such approach as development of a method of regularization of Tikhonov with reference to autoregressive spectral estimation.
Regularization application can lead to the superresolution, i.e. to occurrence on spectral function of several peaks. However one of problems of a linear prediction equations system Tikhonov method correction is the selection of the regularization parameter value, providing the most exact estimations of parameters on spectral function.
Article purpose - to set an example applications of the device of boundary spectral functions for definition of indignations of a vector of weight factors and calculation with their help of parameter of the regularization providing the superresolution at a building of system equations of a linear prediction method on least smoothing error function.
Pages: 46-53
References
- Marpl-ml. S.L. Cifrovojj spektralnyjj analiz i ego prilozhenija: per. s angl. M.: Mir. 1990.
- Gejjbriehl U.F. Spektralnyjj analiz i metody sverkhrazreshenija s ispolzovaniem adaptivnykh antennykh reshetok // TIIEHR. 1980. T. 68. № 6.
- Ratynskijj M.V. Adaptacija i sverkhrazreshenie v antennykh reshetkakh. M.: Radio i svjaz. 2003. 200 s.
- Grigorjan D.S. Opredelenie oblasti sverkhrazreshenija istochnikov izluchenija po prostranstvu pri sobstvennykh shumakh i neidentichnostjakh priemnykh traktov // Radiotekhnika. 2007. № 8. S. 43-48.
- Grigorjan D.S. Vlijanie neidentichnostejj amplitudno-chastotnykh kharakteristik priemnykh kanalov cifrovojj antennojj reshetki na vozmozhnost sverkhrazreshenija istochnikov izluchenija po prostranstvu // Radiotekhnika. 2009. № 10. S. 27-36.
- Abramovich JU.I., Kachur V.G., Mikhajjljukov V.N. EHffektivnost prostranstvennojj kompensacii pomekh v sistemakh s neidentichnymi kanalami priema // Radiotekhnika i ehlektronika. 1989. T. 24. № 6. S. 1196-1206.
- Ermolaev V.T., Krasnov B.A., Flaksman A.G. Issledovanie vlijanija fluktuacijj vesovogo vektora na ehffektivnost adaptivnykh antennykh reshetok // Izv. vuzov. Ser. Radiofizika. 1986. T. 29. № 10. S. 1092-1099.
- KHachaturov V.R. Vlijanie sluchajjnykh fazovykh oshibok priemnykh kanalov antennojj reshetki na kachestvo razreshenija istochnikov vneshnego izluchenija // Antenny. 2000. № 2. S. 55-59.
- Abramenkov V.V., ZHiburtovich N.JU., Klimov S.A., Savinov JU.I., CHizhov A.A. Ocenka vlijanija iskazhenijj kharakteristik napravlennosti ehlementov antennykh reshetok na ehffektivnost izmerenija uglovykh koordinat metodom Proni // Informacionno-izmeritelnye i upravljajushhie sistemy. 2005. T. 3. №6. S. 36-41.
- Kuriksha A.A. Ocenka chisla i parametrov komponent signala pri nalichii shuma // Radiotekhnika i ehlektronika. 1984. № 9. S. 1740-1744.
- Grigorjan D.S., Abramenkov V.V., Vasilchenko O.V., Savinov JU.I. Kriterijj sverkhrazreshenija po spektralnym funkcijam metodov spektralnogo ocenivanija // Voprosy radioehlektroniki. Ser. radiolokacionnaja tekhnika. 2010. Vyp. 3. S. 76-87.
- CHeremisin O.P. O vybore parametra dlja reguljarizovannogo metoda adaptivnojj optimizacii filtrov // Radiotekhnika i ehlektronika. 1985. T. 30. № 12. S. 2369-2377.
- Ermolaev V.T., Rodygin JU.L., Flaksman A.G. Metody opredelenija vektora prostranstvennojj adaptivnojj obrabotki pri korotkojj vyborke pomekhi // Izv. vuzov. Ser.
Radiofizika. 1994. T. 37. № 4. S. 493-509. - Abramovich JU.I. Reguljarizovannyjj metod adaptivnojj optimizacii filtrov po kriteriju maksimuma otnoshenija signal/pomekha // Radiotekhnika i ehlektronika. 1981. T. 26. № 3. S. 543-551.
- Tikhonov A.I., Arsenii V.JA. Metody reshenija nekorrektnykh zadach. M.: Nauka. 1979. 288 s.