350 rub
Journal Radioengineering №11 for 2013 г.
Article in number:
Spectral signal processing method in multifrequency spatially multichannel radar system
Authors:
V.Ju. Loskutov - assistant, faculty RL-1 of Bauman MSTU
G.P. Slukin - Ph.D. (Eng.), Senior Research Scientist, Director of Scientific Researcher Institute of Radio-Electronic Engineering, Bauman MSTU
V.V. Chapursky - Dr.Sci. (Eng.), Senior Research Scientist, Scientific Researcher Institute of Radio-Electronic Engineering, Bauman MSTU
Abstract:
In the work theoretically and on the basis of mathematical modeling the method of spatial - spectral processing of vector signals in multifrequency spatial - multichannel Radar tracking system such as MIMO Radar is investigated. The algorithm of spatial - spectral processing of signals in multifrequency MIMO Radar is based on representation of the generalized correlation processing integral in spectral domain. Such method demands transformation of received multifrequency pulse packet signals to the digital form on all duration of a pack (from fraction of a second up to units of seconds). Thus the period of quantization on time should get out proceeding from width of a spectrum of multifrequency pulses. So at width of a spectrum about 1.0 MHz the period of quantization is 0.5 microsecond, that at duration of a pack of 0.25 seconds resulted in amount of sampling about 250 thousand readout. Actually the algorithm of spatial - spectral processing consists of two stages. 1. A stage of the spectral analysis of readout sequence with accumulation of Doppler spectral components from all ambiguous frequency intervals, receiving positions and transmitting frequencies components with the subsequent detection, resolution and measurement of Dopler frequencies. Such method replaces receiver gating on time for all distance range with Doppler detection of the targets in each gate. 2. A stage of spatial coordinates focusing for Doppler detected targets for each of measured Doppler frequencies. Modeling examples of non coherent accumulation of spectra at the first stage having typical losses of the signal/noise ratio are submitted. Focusing of spatial coordinates of the targets at the second stage was executed by a back projection method for measured Doppler frequencies of two targets having different coordinates. That has shown serviceability of spectral processing algorithm in absence of time pulse gating in multifrequency spatial - multichannel radar location systems such as MIMO radars. The further perfection of processing algorithm is connected to transition from non coherent summation of spectra to completely coherent processing with summation of complex spectra that will allow essentially improve the threshold signal/noise value, but will demand increase computing power.
Pages: 39-49
References

  1. Fishler E., Haimovich A., Blum R., Chizhik D., Cimini L., Valenzuela R. MIMO Radar: An Idea whose Time has come // Proceedings of the IEEE Radar Conference. 26-29 April. 2004. P. 71-78.
  2. Rabideau D.J, Parker P.A. Ubiquitous MIMO Multifunction Digital Array Radar and the Role of Time-Energy Management in Radar // Project Report DAR-4. Lincoln Laboratory Massachusetts Institute of Technology. 2004.
  3. Dorey J., Blanshard Y., Christophe F. Le Projet RIAS: une approche nouvelle du radar sur surveillance aerienne // Colloque International sur le Radar. Paris. April. 1984. P. 505-510.
  4. Dorey J., Garnier G., Auvray G. RIAS, radar a impulsion et antenne syntetique // Colloque International sur le Radar. Paris. April. 1989. P. 556-562.
  5. Lesturgie M., Eglizeaud J. P., Auffray G., Muller D., Oliver B., Delhote C. The last decades and the future of low frequency radar cjnsepts in France // International Conference on Radar Systems-RADAR 2004. 18-22 October. 2004. Toulouse. France.
  6. Baixiao Chen, Shouhong Zhang, Yajun Wang, Jun Wang Analysis and Experimental Results on Sparse-array Synthetic Impulse and aperture Radar // Proceedings of International Radar Conference. Beijing. China. October 2001. P. 76-80.
  7. Gesbert F., Bolcskei H., Gore D.A., Paulary A.J. Outdoor MIMO wireless channels: Models and performance prediction // IEEE Trans. on Commun. December 2002. V. 50. № 12. P. 1926-1934.
  8. Kryuchkov I.V., Chapurskij V.V. Struktura sistem korrelyaczionnoj prostranstvenno-vremennoj obrabotki signalov v mnogochastotny'x prostranstvenno mnogokanal'ny'x RLS // Doklady' NTK «Radioopticheskie texnologii v priborostroenii». p. Nebug. Krasnodarskij kraj. Rossiya. 1(7 sentyabrya 2013.  S. 209-225.
  9. Vovshin B.M. Sverxshirokopolosny'e radiolokaczionny'e sistemy': Novy'j podxod k princzipam postroeniya // Trudy' Jub. nauch. tex. konf., posv. 30-letiyu obrazov. CNIIRE'S. M.: CNIIRE'S. 2001. S. 139-149.
  10. Vovshin B.M., Sverdlov B.G. Teoreticheskie i e'ksperimental'ny'e issledovaniya sverxshirokopolosny'x radiolokaczionny'x sistem s ortogonal'ny'mi zondiruyushhimi signalami // Trudy' Pervogo Mezhdunar. radioe'lektronnogo foruma «Prikladnaya radioe'lektronika. Sostoyanie i perspektivy' razvitiya» (MRF-2002). 8-10 oktyabrya 2002. Xar'kov. S. 62-64.
  11. Chapurskij V.V. Obrabotka signalov v mnogochastotny'x radiolokaczionny'x sistemax s antennami iz prostranstvenno raspredelenny'x peredayushhix i priemny'x e'lementov // Vestnik MGTU im. N.E'. Baumana. Seriya «Priborostroenie». 2008. Vy'p. 3. S. 69-79.
  12. Chapursky V.V., Ivashov S.I., Vasiliev I.A., Zhuravlev A.V. Short Range Radar with MIMO Antenna System and Multifrequency Sounding Signal // Int. Conf. -Progress In Electromagnetics Research Symposium - (PIERS-2009). August 18-21. 2009. Moscow. RUSSIA.
  13. Shirman Ja.D., Manzhos V.N. Teoriya i texnika obrabotki RLI na fone pomex. M.: Radio i svyaz'. 1981.
  14. Papulis A. Teoriya sistem i preobrazovanij v optike. M.: Mir. 1971.
  15. Radiolokaczionny'e ustrojstva / pod red. V.V. Grigorina-Ryabova. M.: Sov. radio. 1970.
  16. Kuriksha A.A. Algoritm obratnoj proekczii v zadachax vosstanovleniya prostranstvennogo raspredeleniya istochnikov voln // Radiotexnika i e'lektronika. 2002. T. 47. № 12. S. 1484-1489.