350 rub
Journal Radioengineering №11 for 2013 г.
Article in number:
Spatially multichannel distant range radar with high resolution
Authors:
G.P. Slukin - Ph.D. (Eng.), Senior Research Scientist, Director of Scientific Researcher Institute of Radio-Electronic Engineering, Bauman MSTU
V.V. Chapursky - Dr.Sci. (Eng.), Senior Research Scientist, Scientific Researcher Institute of Radio-Electronic Engineering, Bauman MSTU
Abstract:
The review of foreign distant detection spatially - multichannel radar location systems (SM RLS) is given. Vivid examples of the given class of systems appear French RLS RIAS and its Chinese analogue, operating in a meter wave band. In France on similar principles it is created over-the-horizon radar "NOSTRADAMUS" operating in decameters wave band. On modern terminology SM RLS concern to new class such as MIMO Radar where abbreviation MIMO recently borrowed from area of systems of wireless data transmission, and is deciphered as Multiple Input-Multiple Output. For the control of spacecraft orbits in France also it is created bistatic radar GRAVES, operating with the unmodulated radiation at 143 MHz. The system drawback is the impossibility of receiving of spacecraft range portraits that does not allow solving a problem of the space control (SC) to the full. For more full SC problems decision SM RLS such as MIMO possessing potentially the big range detection and high range and angular resolution can be used. That sort of RLS can use big sparse antenna system, consisting of moderate number of simple non phase controlled transmitting and receiving elements. Also application of orthogonal multifrequency space-time wide band and ultra wide band (UWB) sounding signals (SS) and also long-time coherent integration with the Doppler frequency resolution about units or share of Hertz are possible. In connection with the outlined circumstances in the work the potential performance characteristics of multifrequency MIMO RLS are analyzed at their realization in various wave bands and application of UWB multifrequency SS. It is shown, that in low-frequency wave band MIMO RLS with UWB multifrequency SS and frequency band width 1000 MHz at central frequency 750 MHz has calculated detection range 1500 km on the target with cross section 1.0 m2 at 5 seconds integration time. A band width and average power of transmitting element consist 7.82 MHz and 8.2 kW correspondingly and average power of all transmitter elements makes up about 1.0 MW. Thus circular antenna array has about 400 m diameter and should contain 128 both transmitting and receiving elements equidistantly located on circles. The total number of frequencies of a coherent monopulse multifrequency signal can make 1024, thus each of transmitting elements radiates on 8 frequencies in the narrow frequency range. The required antenna gain of transmitting and receiving elements should make not less than 9 dB. For MIMO RLS in centimeter wave bands at the same as in a low-frequency band antenna elements gain, transmitting powers and target cross section the detection range consists 415 km at frequency band 10.0 GHz and 760 km at frequency band 3.0 GHz which accordingly 3.6 times and in 2 times are less, than for MIMO RLS at low-frequency wave band.
Pages: 24-34
References

 

  1. Immoreev I.Ja., Chernyak V.S. Kratkij ocherk istorii razvitiya radiolokaczii v Sovetskom Soyuze i v Rossii // Radiotexnika. Vy'p. 3. 2009. S. 25-36.
  2. http://oko-planet.su/sciencecosmos/16618-sistema-kontrolya-kosmicheskogo-prostranstva.html
  3. Forsyte K.W., Bliss D.W., Fawsett G.S. Multiple-input multiple output (MIMO) radar: performance issues // Conference Record of the Thirty-Eight Asilomar Conference on Signals, Systems and Computers 2004. 7-10 Nov. 2004. V. 1. PP. 310-315
  4. Dorey J., Garnier G. , Auvray G. RIAS, radar a impulsion et antenne syntetique // Colloque International sur le Radar. Paris. April. 1989. P. 556-562.
  5. Vovshin B.M. Sverxshirokopolosny'e radiolokaczionny'e sistemy'. Novy'j podxod k princzipam postroeniya // Trudy' Jubilejnoj NTK, posvyashhennoj 30-letiyu obrazovaniya CNIIRE'S. 12(14 sentyabrya 2001. Ch. 1. Moskva. 2001. S. 139-149.
  6. Chapurskij V.V. Obrabotka signalov v mnogochastotny'x radiolokaczionny'x sistemax s antennami iz prostranstvenno raspredelenny'x peredayushhix i priemny'x e'lementov // Vestnik MGTU imeni N.E'. Baumana. Seriya «Priborostroenie». Vy'p. 3. 2008. S. 9-79.
  7. Chernyak V.S. Mnogopoziczionnaya radiolokacziya. M.: Radio i svyaz'. 1993.
  8. Nicolas M., Pirolli C.. Balayage rapid par traitment du signal // L-Ond Electrique. V. 49. fasc. 2. fevrier 1969. P. 214-222.
  9. Kucherov Ju.S., Chapurskij V.V. Antenny'e reshetki so sverxby'stry'm skanirovaniem lucha // Radiotexnika i e'lektronika. 1994. S. 1562-1569.
  10. Dorey J., Blanchard Y., Christophe F.. Le projet RIAS, un approche nouvelle du radar de surveilance aerienne // Colloque International dur le radar. Versailles. 21(24 mai 1984.
  11. Thibaud D., Eglizeaud J. P. Calculateur de poursuid 4D pour le Radar a Impulsion et Antenne Synthetique (RIAS) // Colloque International sur le Radar. Paris. April. 1989. P. 370-374.
  12. Lesturgie M., Thibaud D. Fouillis de mer et limitations introduites dans le domaine de la detactabilite des cibles en VHF // Colloque International sur le Radar. Paris. April. 1989. P. 132-137.
  13. Curt C., Medynski D. Comparision de methods d-anti-bruillage iteratives etsemi-directes appliqués aux reseaux lacunaires // Colloque International sur le Radar. Paris. April. 1989. P. 261-266.
  14. Lesturgie M., Renoux E. Etude des anomalies de propagation a site bas et consequences sur les grands reseaux phases // Collo­que International sur le Radar. Paris. April. 1989. R. 152-157.
  15. Chassain T. Calculateur de veille temps reel pour radar a impulsion et antenne synthetique // Colloque International sur le Radar. Paris. April. 1989. P. 364-369.
  16. Lesturgie M., Eglizeaud J. P., Auffray G., Muller D., Oliver B., Delhote C. The last decades and the future of low frequency radar cjnsepts in France // International Conference on Radar Systems- RADAR 2004. 18-22 October. 2004. Toulouse. France.
  17. Chen Baixiao, Zhang Shouhong, Wang Yajun, Wang Jun. Analysis and Experimental Results on Sparse-array Synthetic Impulse and aperture Radar // Proceedings of International Radar Conference. Beijing. China. October 2001. P. 76-80.
  18. Rotxammel'. Antenny'. T. 1, 2. Danvel. 2005.
  19. Ashixmin A.V. Proektirovanie i optimizacziya sverxshirokopolosny'x antenny'x ustrojstv i sistem dlya apparatury' radiokontrolya. M.: Radio i svyaz'. 2005.