350 rub
Journal Radioengineering №7 for 2012 г.
Article in number:
Bistatic Scattering Diagrams of the Sea Surface Covered with Monomolecular Oil Film
Authors:
V.V. Leontyev, M.A. Borodin, O.A. Ignatyeva
Abstract:
The procedure of numerical simulation the bistatic scattering diagram of clean sea surface and sea surface polluted by monomolecular oil film in the context of oil spill detection problem by system with consists of radar and passive reflector is presented. Numeric simulation of bistatic scattering diagram is made by Monte Carlo method. Setting number of clean and polluted sea water realization is generated by spectral method and for each one bistastic scattering diagram is calculated. Sea spectrum Elfouhaily model weighed by damping coefficient with considered the rheological characteristics of oil slick and the influence on wind by sea surface is used for sea surface with oil slick simulation. The iteration algorithm for solving two-dimensional scattering problem on deterministic surface at low grazing angles with based on the Fredgolm integral equation second kind is utilized for bistatic scattering diagram calculation. The quantitative estimates of scattering coefficient for clean and polluted sea surface in specular direction is given. Also the values of contract scattering coefficient of polluted sea surface by clean surface is presented. From the bistatic scattering analyze is followed that the application scattering in specular direction at oil film detection on sea surface is provided the great energy profit relatively backward scattering.
Pages: 39-45
References
  1. Леонтьев В. В. Использование РЛС в сочетании с пассивным отражателем для обнаружения загрязнения водной поверхности нефтью // Изв. вузов. Сер. Радиоэлектроника. 1991. № 8. С. 33-37.
  2. Леонтьев В. В. Феноменологическая теория рассеяния радиоволн морскими объектами. СПб.: Изд-во СПбГЭТУ «ЛЭТИ». 2006.
  3. Elfouhaily T., Chapron B., Katsaros K., Vandemark D. A unified directional spectrum for long and short wind-driven waves // Journal of geophysical research. C Oceans. 1997.  V. 102, № 7. P. 15 781-15 796.
  4. Karaev V., Kanevsky M., Meshkov E. The effect of sea surface slicks on the Doppler spectrum width of a backscattered microwave signal // Sensors. 2008. V. 8. № 6. P. 3780-3801.
  5. Гродский С. А., Кудрявцев В. Н., Макин В. К. Оценка влияния поверхностных пленок на короткие ветровые волны и характеристики пограничного слоя атмосферы // Морской гидрофизический журнал. 1999. № 6. С. 3-14.
  6. Ермаков С. А., Сергиевская И. А., Гущин Л. А. Пленки на морской поверхности и их дистанционное зондирование // Современные проблемы дистанционного зондирования Земли из космоса. 2006. Т. II. Вып. 3. С. 86-98.
  7. Toporkov J. V., Brown G. S.Numerical simulations of scattering from time-varying, randomly rough surfaces // IEEE
    Trans. on geoscience and remote sensing. 2000. V. 38. № 4. P. 1616-1624.
  8. Tsang L., Kong J. A., Ding K.-H. Scattering of electro-magnetic waves: Numerical simulations. N. Y.: John Wiley and Sons. 2001. 124 p.
  9. Леонтьев В. В., Бородин М. А., Богин Л. И. Итерационный алгоритм расчета поля, рассеянного шероховатой поверхностью // Радиотехника и электроника. 2008. Т. 53. № 5. С. 537-544.
  10. Бородин М. А., Леонтьев В. В. Анализ точностных характеристик итерационного алгоритма вычисления поля, рассеянного шероховатой поверхностью // Радиотехника и электроника. 2009. Т. 54. № 9. С. 1043-1048.