350 rub
Journal Radioengineering №6 for 2012 г.
Article in number:
Orthogonal Signals for Data Rate Increasing in the GNSS System of Differentional Correction and Monitoring
Keywords:
global navigation satellite systems
GLONASS
SBAS
SDCM
data rate increase
precise point positioning
Authors:
A.N. Karutin, S.N. Karutin, V.N. Kharisov
Abstract:
System of differentional correction and monitoring demands high data rate up to 3330 bits/s from GEO satellite. This occurs because the amount of data from satellite and the total number of the GNSS satellites have increased and in addition integrity must be updated each second. Traditional combination of BPSK and convolutional code leads to reduction of PR sequence length and makes worse its correlation properties.
It is suggested to replace BPSK with orthogonal signals while convolutional code is replaced by Reed-Solomon code. Such combination form concatenated code which inner code is orthogonal signal modulator (512, 9) and outer code is Reed-Solomon (511, 383). In represented structure each orthogonal signal transmits nine bits. User data frame is 4500 bits where informational are 3366 bits and the rest 1134 are checking bits. Consequently data rate is 4500 bits/s and informational symbol duration is 2 ms.
Sigal-to-noise ratio difference between proposed concatenated code and Shannon limit where code rate r = ¾ is 0,74 dB for bit error rate 10-5.
Implementation of such structure will not meet any problems because we can reuse correlators from fast locking-in block which is not utilized after signal detection from any navigation satellite.
Pages: 131-139
References
- Todd Walter, Per Enge, Juan Blanch. Future Augmented // GPS World. 2010. V. 21.№ 3. P. 36 - 41.
- Дворкин В.В., Карутин С.Н., Глухов П.Б. Анализ состояния и перспектив развития технологий высокоточного местоопределенияпосигналам ГНСС // Радиотехника. 2011. № 3. 1. С. 4 - 13.
- Minimum Operational Performance Standards for Global Positioning/Wide Area Augmentation System Airborne Equipment, RTCA/DO-229D, prepared by SC-159, RTCA Inc., Washington, D.C., December 13, 2006.
- Urlichich Y., Subbotin V., Stupak G., Dvorkin V., Povaliaev A., Karutin S. GLONASS Modernization Proceedings of the 24rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, September 2011. P. 3125 - 3128.
- EGNOS/SDCMPPP studies. ОАО «Российские космические системы». 2011. 25 c.
- Johannesson K., Zigangirov K. Fundamentals of convolutional coding / Wiley-IEEE Press.1999.
- ГЛОНАСС. Принципы построения и функционирования / под. ред. А.И. Перова, В.Н. Харисова. Изд. 4-е перераб. и доп. М.: Радиотехника. 2010.
- Витерби Э.Д. Принципы когерентной связи: пер. с англ. под ред. Б.Р. Левина. М.: Сов. радио. 1970.
- Прокис Дж.Цифровая связь. М.: Радиоисвязь. 2000.
- Pena A.G., Boucheret M.L., Macabiau C., Damidaux J.L., Ries L., Corazza S., Escher A.C. Implementation of Code Shift Keying signaling technique in GALILEO E1 signal // NAVITEC 5th ESA workshop. 2010. P.1 - 8.
- Берлекэмп Э. Алгебраическаятеориякодирования. М.: Мир. 1971.
- Quasi-Zenith Satellite System Navigation Service. Interface Specification for QZSS (IS-QZSS) V1.4. Japan Aerospace Exploration Agency. February 28. 2012.