350 rub
Journal Radioengineering №12 for 2012 г.
Article in number:
Acousto-optic broadband spectral efficient interface wireless access to networks «GRID»
Authors:
V.N. Kurskii, V.V. Proklov, O.A. Byshevski-Konopko
Abstract:
In this paper actual now question is considered - development of wireless access tools, having high bandwidth capacity and spectral efficiency. Now GRID technologies are considered as most perspective for developments of virtual geographically distributed telecommunication and computing networks. And, wideband wireless access on so called "last mile" is recognized modern telecommunications fundamental problem in such conditions, then for virtual connection or by usage demands it is necessary to provide wireless data transfer with speeds from 100 Mbit/s (in mobile version) up to 1 Gbit/s and more (for fixed access) within virtual GRID networks. Now following mainstreams in the decision of this problem were defined: Significant increase of transmitting signals frequency spectrum; New signal constructions and algorithms of modulation/demodulation, providing ultra high speed transfer, compensation of effects of multi-ray beam propagation and so on; Utilization of perspective wideband transfer technologies with high spectral efficiency. The carried out in IRE RAS researches have opened new possibilities of realization of adaptive tools of extra wideband remote wireless access with speeds mentioned above. Conception of - wireless replacement for stationary cable - within virtual local GRID networks, suggested in IRE RAS, is based on specialized acousto-optic analog SAW-processor for correlation processing of complex signal coding constructions with extended spectrum, which are used on physical level of wireless interface and are compatible with local network interface IEEE Std 802.11a. Suggested solutions provide wide opportunities for modern telecommunication service granting and for multiband transfer of all kinds of information with variable traffic speeds. As the carried out researches show, application of non-traditional solid-state acousto-optic technology for creation of the basic components of wireless access interface is capable to provide their small dimensions and energy consumption along with high reliability and small cost in mass production. At the same time, the possibilities of the realization of specialized acousto-optic analog processor on their basis allows to expand essentially working frequencies band and to provide ultrahigh speed of signals processing and, accordingly, bandwidth capacity of wireless access. In whole, as a result of work there were established basic possibility and advantages of application of analog signal SAW processors for complex ultra wideband signal constructions processing in wireless communication systems.
Pages: 72-84
References
  1. Интернет-Портал по Грид-технологиям: http://www.gridclub.ru/
  2. Гуляев Ю.В., Курский В.Н., Проклов В.В. и др. // Радиотехника. 1996. №.5. С. 3-6.
  3. Проклов В.В., Курский В.Н. О возможности построения сверхширокополосного интерфейса беспроводного доступа 4-го поколения SAW-OFDM-WCDMA на основе ПАВ технологии // Успехи современной радиоэлектроники. 2004. №5-6. С. 29-34.
  4. Проклов В.В., Курский В.Н. Универсальный сверхширокополосный беспроводной интерфейс связи четвертого поколения на базе квадратурного аналогового препроцессора на поверхностных акустических волнах // Радиотехника и электроника. 2005. №9. С. 1102-1109.
  5. Проклов В.В., Курский В.Н., Бышевский-Конопко О.А. Акустоэлектронный широкополосный спектрально эффективный интерфейс беспроводного доступа к сетям «ГРИД» // Радиотехника. 2010. №9. С. 47-57.
  6. Червяков Г.Г., Роздобудько В.В. Введение в радиооптику. Изд. 2-е. М.: УмиИЦ «Учебная литература». 2009. 260 с.
  7. Кулаков С.В. Акустооптические устройства спектрального и корреляционного анализа сигналов. Л.: Наука. 1978.
  8. Родес У.Т. Акустооптическая обработка сигналов: Свертка и корреляция // ТИИЭР. 1981. Т. 69. №1. С. 74-91.
  9. Магдич Л.Н., Молчанов В.Я. Акустооптические устройства и их применение. М.: Сов. радио. 1978.
  10. Масальский Н.В. Мультиволновое акустооптическое устройство для корреляционного анализа в реальном времени // Электромагнитные волны и электронные системы. 2006. №6.
  11. Высоцкий М.Т., Kaacик В.П., Рогов С.А. Исследование многоканальных акустооптических устройств с временным интегрированием для обработки сигналов антенных решеток // Автометрия. 1991. №2. С. 38-40.
  12. Berrou C. and Glavieux A. Near Optimum Error Correcting Coding and Decoding: Turbo Codes // IEEE trans. On Communications. 1996. V. 44. No.10. Р. 1856-1862.
  13. Third Generation Partnership Project 2 (3GPP2) // Physical Layer Standard for cdma2000 Spread Spectrum Systems, Release C. 3GPP2 C.S0002-C. Version 1.0 (May 28, 2002).
    Р. 115-22.
  14. Проксис Дж. Цифровая связь. М.: Радио и связь. 2000. 800 с.
  15. Theory of Gold Sequences http://it.e-technik.uni-ulm.de/sequences/theory/theory_gold.html
  16. Gold R. Optimal Binary Sequences for Spread Spectrum Multiplexing // IEEE Trans. Info. Theory. 1967. V. IT-B. Р. 619-21.
  17. Квадратурная модуляция. Википедия http://ru.wikipedia.org/wiki/QAM
  18. Феер К. Беспроводная цифровая связь. М.: Радио и связь. 2000.
  19. http://www.nttdocomo.com/pr/2007/001319.html NTT DoCoMo Achieves World's First 5Gbps Packet Transmission in 4G Field Experiment. Tokyo. Japan. 2007. 9 February (by increasing the number of MIMO transmitting and receiving antennas from six to 12 each).