350 rub
Journal Radioengineering №12 for 2012 г.
Article in number:
From RF and DC SQUIDs to BI-SQUID
Authors:
V.K. Kornev, I.I. Soloviev, A.V. Sharafiev, N.V. Klenov
Abstract:
A new element, bi-SQUID realizing two successive nonlinear signal transformations answering the ones in rf and dc SQUIDs, is proposed. Setting the transformations mutually inverse, one can come to a highly linear magnetic field to voltage transfer function of the bi-SQUID. Analytical theory is developed and discussed. Results of experimental evaluation of serial arrays of bi-SQUIDs formed by niobium process with critical current density 4.5 kA/cm2 for Josephson tunnel junctions, are presented and analyzed. Impact of the critical current spread and the means for decrease of the impact on linearity of the array voltage response are considered. Special gradiometric topology of the bi-SQUID is suggested to be realized with submicron Josephson-junction process leaving superconducting screen out. The bi-SQUID with high linearity voltage response can be used as basic cell of superconducting quantum arrays allowing designing of both the high sensitive broad band amplifiers and the active electrically small antennas for sub-gigahertz and gigahertz frequency ranges. Such active antennas can be realized through integration of the arrays with either common or individual superconducting transformers as well as by use two-dimensional arrays with normal-metal cell-to-cell connection.
Pages: 32-41
References
  1. FujimakiA., KatayamaM. etal. Advanced base-station based on superconductive devices and softwaredefined radio technology // Supercond. Sci. Technol. 1999. V. 12. Р. 708-710.
  2. Wikborg E.B., Semenov V.K. and Likharev K.K. RSFQ front-end for a software radio receiver // IEEE Trans. Appl. Supercon. 1999. V. 9. Р. 3615-3618.
  3. Mitola J. Software radio architecture evolution: Foundations, technology tradeoffs, and architecture implications // IEICE Trans.Commun. 2000. V. E83-B. Р. 1165-1173.
  4. Brock D.K., Mukhanov O.A. and Rosa J. Superconductor digital RF development for software radio // IEEE Commun. Mag. 2001. V. 39. No.2. Р. 174-179.
  5. Wong J., Dunnegan R., Gupta D. et al. High Performance, All Digital Rf Receiver Tested at 7.5 Gigahertz / Military Communications Conference, 2007 (MILCOM 2007) // IEEE Digital Object Identifier: 10.1109/MILCOM.2007.4455052. Р. 1-5.
  6. Mukhanov O.A., Kirichenko D., Vernik I.V. et al. Superconductor Digital-RF Receiver Systems // IEICE Trans. Electron. 2008. V. E91-C. No.3. Р. 306-317.
  7. Kirichenko D.E., Filippov T.V. and Gupta D. Microwave Receivers with Direct Digitization // Microwave Symposium Digest. 2009. Р. 1449-1452.
  8. Vernik I.V., Kirichenko D.E. et al. Progress in the Development of Cryocooled Digital Channelizing RF Receivers // IEEE Trans. Appl. Supercon. 2009. V. 19. Р. 1016-1021.
  9. Gupta D., Kirichenko D.E., Dotsenko V.V., Miller R. et al. Modular, Multi-function Digital-RF Receiver Systems // IEEE Trans. Appl. Supercon. 2011. V. 21. Р. 883-890.
  10. Yohannes D., Sarwana S. et al.Characterization of HYPRES - 4.5 kA/cm2& 8 kA/cm2Nb/AlOx/Nb Fabrication Processes //IEEE Trans. Appl. Supercond. 2005. V. 15. No.2. Р. 90-93.
  11. Mukhanov O., Gupta D., Kadin A. and Semenov V. Superconductor Analog-to-Digital Converters // Proc. of the IEEE. 2004. V. 92. Р. 1564-1584. Oct.
  12. Inamdar A., Rylov S. et al. Progress in Design of Improved High Dynamic Range Analog-to-Digital Converters // IEEE Trans. Applied Superconductivity. 2009. V. 19. No.3. Р. 670-675.
  13. HYPRES Design Rules. Available: http://www.hypres.com/
  14. Yohannes D., Sarwana S. et al.Characterization of HYPRES - 4.5 kA/cm2& 8 kA/cm2Nb/AlOx/Nb Fabrication Processes //IEEE Trans. Appl. Supercond. 2005. V. 15. No.2. Р. 90-93.
  15. Supercond. Sci. Technol. 25 (2012) 045001.
  16. Ohshima S. High-temperature superconducting passive microwave devices, filters, and antennas // Supercond. Sci. Technol. 2000. V. 13. Р. 103-108.