350 rub
Journal Radioengineering №12 for 2012 г.
Article in number:
Measuring systems based on HTc SQUIDs
Authors:
M.I. Faley, Y.V. Maslennikov, V.P. Koshelets
Abstract:
Measuring systems based on superconducting quantum interferometers (SQUIDs) for nondestructive testing of materials, magnetic microscopy and biomagnetic research were developed. The use of SQUID based on films of high temperature superconductors (HTc SQUID) made it possible to increase the sensitivity while maintaining their operating temperatures from 4.2 K to 77.4 K and a more subtle and less noisy insulation. System for nondestructive testing of materials with thin-film SQUID gradiometer operated stably in the magnetically unshielded space with sensitivity of about 15 fT/cmHz, which was sufficient for detection of magnetic particles measuring about 10 µm at a distance of about 15 mm. Magnetic microscope based on autonomous HTc SQUID with a ferromagnetic antenna has shown the magnetic field sensitivity of about 1 nT/Hz and a spatial resolution of about 1 micron. System for biomagnetic measurements demonstrated sufficient sensitivity for application in magnetocardiography and magnetoencephalography.
Pages: 5-24
References
- Clarke J. SQUIDs for everything // Nature Materials. 2011. V. 10. Р 262-263.
- Fagaly R.L. Superconducting quantum interference device instruments and applications // Rev. Sci. Instr. 2006. V. 77. 101101(45).
- Faley M.I., Poppe U., Urban K., Paulson D.N., Starr T., & Fagaly R.L. Low noise HTS dc-SQUID flip-chip magnetometers and gradiometers // IEEE Trans. Appl. Supercond. 2001. V. 11. № 1. Р. 1383-1386.
- Фалей М.И. Магнитометры и градиометры на основе гетероструктур оксидных сверхпроводников // Радиотехника и электроника. 2005. Т. 50. № 3. С. 1-8.
- Faley M.I., Poppe U., Urban K., Zimmermann E., Glaas W., Halling H., Bick M., Paulson D.N., Starr T., and Fagaly R.L. Operation of the HTS dc-SQUID Sensors in High Magnetic Fields // IEEE Transactions on Applied Superconductivity. 1999. V. 9. № 2. Р. 3386-3391.
- http://www.tristantech.com/prod_geomagnetic.html
- Krause H.-J., Wolf W., Glaas W., Zimmermann E., Faley M.I., Sawade G., Mattheus R., Neudert G., Gampe U., Krieger J. SQUID Array For Magnetic Inspection of Prestressed Concrete Bridges // Physica C: Superconductivity. 2002. V. 368. № 1-4. P. 91-95.
- Krause H.-J., Zhang Y., Hohmann R., Grüneklee M., Faley M.I., Lomparski D., Maus M., Bousack H., Braginski A.I. Eddy Current Aircraft Testing with Mobile HTS-SQUID Gradiometer System // Inst.Phys.Conf.Ser. 1997. № 158. Р. 775.
- Valentino M., Ruosi A., Peluso G., & Pepe G.P. Structural health monitoring of materials by high critical temperature SQUID // Physica C. 2002. V. 372-376. № 1. Р. 201-208.
- Daibo M., Shikoda A., & Yoshizawa M. Non-contact evaluation of semiconductors using a laser SQUID microscope // Physica C. 2002. V. 372-376. № 1. Р. 263-266.
- Daibo M., & Kamiwano D. Examination of relationship between resistivity and photocurrent induced magnetic field in silicon wafers using laser SQUID // IEEE Trans. Appl. Supercond. 2005. V. 15. № 2. Р. 684-687.
- Watanabe T., Watanabe S., Ikeda T., Kase M., Sasaki Y., Kawaguchi T., & Katayama T. A prototype of a highly sensitive cryogenic current comparator with a HTS SQUID and HTS magnetic shield // Supercond. Sci. Technol. 2004. V. 17. Р. S450-S455.
- Watanabe T., Fukunishi N., Sasaki Y., Kase M., Goto A., & Kamigaito O. Development of beam current monitor with high-Tc SQUID at RIBF // Proc. of Beam Instrumentation Workshop (BIW10), La Fonda on the Plaza Santa Fe. New Mexico. USA. May 2-6. 2010. Invited talk. 10 pages.
- Faley M.I., Poppe U., Slobodchikov V.Yu., Maslennikov Yu.V.,and Urban K. HTS dc-SQUID planar Gradiometer Measurement System for routine Inspections // Superconductor Science and Technology. 2004. V. 17. P. S301-S304.
- Koch R.H., Foglietti V., Rozen J.R., Stawiasz K.G., Ketchen M.B.,Lathrop D.K., Sun J.Z., and Gallagher W.L. Effects of radio frequency radiation on the dc SQUID // Appl. Phys. Lett. 1994. V. 65. № 1. Р. 100-102.
- Varpula T. and Poutanen T. Magnetic field fluctuations arising from thermal motion of electric charge in conductors // J. Appl. Phys. 1984. V. 55. № 11. Р. 4015-4021.
- Kasai N., Sasaki K., Kiryu S., and Suzuki Y. Thermal magnetic noise of dewars for biomagnetic measurements // Cryogenics. 1993. V. 33. Р. 175-179.
- Zimmerman J.E. and Mercereau J.E. Quantized Flux Pinning in Superconducting Niobium // Phys. Rev. Lett. 1964. V. 13. № 4. Р. 125-126.
- Снигирев О.В. Сверхчувствительная СКВИД-магнитометрия // Успехи физических наук. 1999. Т. 169. № 2. С. 221-223.
- Tsuei C.C., Kirtley J.R., Chi C.C., Yu-Jahnes L.S., Gupta A., Shaw T., Sun J.Z., and Ketchen M.B. Pairing Symmetry and Flux Quantization in a Tricrystal Superconducting Ring of YBa2Cu3O7-d // Phys. Rev. Lett. 1994. V. 73. № 4. Р. 593-596.
- Kirtley J.R., Tsuei C.C., Sun J.Z., Chi C.C., Yu-Jahnes L.-S., Gupta A., Rupp M., Ketchen M.B. Symmetry of the order parameter in the high-Tc superconductor YBa2Cu3O7-d // Nature. 1995. V. 373. № 6511. Р. 225-228.
- Snigirev O.V., Andreev K.E., Tishin A.M., Gudoshnikov S.A., and Bohr J. Magnetic properties of thin Ni films measured by a dc SQUID-based magnetic microscope // Phys. Rev. B. 1997. V. 55. № 21. Р. 14429-14433.
- Снигирев О.В., Тишин А.М., Гудошников С.А., Андреев К.Е., и Бор Я. Магнитные свойства ультратонких пленок Ni // Физика твердого тела. 1998. Т. 40. № 9. С. 1681-1685.
- Kirtley J.R. SQUID microscopy for fundamental studies // Physica C. 2002. V. 368. Р. 55-65.
- Fleet E.F., Chatraphorn S., Wellstood F.C., Knauss L.A., Green S.M. Closed-cycle refrigerator-cooled scanning SQUID microscope for room-temperature samples // Review of Scientific Instruments. 2001. V. 72. № 8. Р. 3281-3290.
- Bondarenko S.I. Ferromagnetic fluxgate for measurement of weak magnetic field structure with use of HTSC-SQUID // Proc. of ICEC 16/ICMC. 1996. Part 2. Р. 1177-1180.
- Bondarenko S.I. Shablo A.A. High-Tc SQUIDs with a ferromagnetic antenna for a magnetic microscope // Non-linear electromagnetic systems. V. Kose, J. Sievert editors. Amsterdam: 105 Press. 1998. Р. 91-104.
- Pitzius P., Dworak V., Hartmann U. Ultra-high Resolution Scanning SQUID Microscope. Extended Abstract of the 6th Int. Supercond. Electr. Conf., ISEC-97. Berlin. Germany. 1997. Р. 395-398.
- Gudoshnikov S.A., Liubimov B.Ya., Matveets L.V., Mikhalenko A.P., Deryuzhkina Yu.V., Sitnov Yu.S., Snigirev O.P. Flux guide for high-Tc SQUID microscope with high spatial resolution // Physica C. 2002. V. 368. P. 66-69.
- Gudoshnikov S.A., Liubimov B.Ya., Matveets L.V., Snigirev O.P. Maresov A.G., Prokoshin A.F., Borisov V.T., Usov N.A. Study of amorphous ferromagnetic microwires using a scanning SQUID microscope // Physica C. 2002. V. 376. P. 271-276.
- Poppe U., Faley M. I., Breunig I., Speen R., Urban K., Zimmermann E., Glaas W., and Halling H. HTS dc-SQUID Microscope with soft-magnetic Flux Guide // Superconductor Science and Technology. 2004. V. 17. P. S191-S195.
- Faley M.I., Pratt K., Reineman R., Schurig D., Gott S., Sarwinski R.E., Paulson D.N., Starr T.N., and Fagaly R.L. HTS dc-SQUID Micro-Susceptometer for Room Temperature Objects // Superconductor Science and Technology. 2004. V. 17. P. S324-S327.
- Jungbluth B. Simulationen und Experimente zur Optimierung eines hochpermeablen Magnetfeldleiters für den Einsatz in einem SQUID-Mikroskop // Diplomarbeit in Physik. Jülich. 2000.
- Roozenboom F., Bloemen P.J.H., Klaassens W., van de Riet E.G.J., and Donkers J.J.T.M. Soft-magnetic fluxguide materials // Philips J. Res. 1998. V. 51. № 1. P. 59-91.
- Vitale S., Prodi G.A., Cerdonio M. Thermal magnetic noise in rf SQUIDs coupled to ferromagnetic cores // J. Appl. Phys. 1989. V. 65. № 5. P. 2130-2136.
- Chatraphorn S., Fleet E.F., and Wellstood F.C. Relationship between spatial resolution and noise in scanning superconducting quantum interference device microscopy // Journal of Applied Physics. 2002. V. 92. № 8. P. 4731-4740.
- Vu L.N. and Van Harlingen D.J. Design and implementation of a scanning SQUID microscope // IEEE Transactions on Applied Superconductivity. 1993. V. 3. № 1. P. 1918-1921.
- Lant J., Stroink G., ten Voorde B., Horacek M., Montague T.J. Complementary nature of electrocardiographic and magnetocardiographic data in patients with ischemic heart disease // Journal of Electrocardiology. 1990. V. 23. № 4. P. 315-322.
- Faley M.I., Poppe U., Urban K., Slobodchikov V.Yu., Maslennikov Yu.V., Gapelyuk A., Sawitzki B., and Schirdewan A. Operation of high-temperature superconductor magnetometer with submicrometer bicrystal junctions // Appl.Phys.Lett. 2002. V. 81. № 13. P. 2406-2408.
- Gapelyuk A., Copetti C.A., Schirdewan A., Schutt H., Wiedemann M., Meyerfeldt U., Primin M.A., Maslennikov Yu.V. Invasive evaluation of MCG-localization results: importance of measured electrophysiological time intervals // Biomag 96: Proceedings of the Tenth International Conference on Biomagnetism. C.J. Aine, Y. Okada, G. Stroink, S.J. Swithenby, C.C. Wood (eds.). New York: Springer-Verlag. 2000. V. 2. P. 464-466.
- Witchalls C. One minute with - Robert Richardson. The New Scientist. 2010; 207, Issue 2773, 14 August. Page 29.
- Witchalls C. Nobel prizewinner: We are running out of helium. New Scientist. 18 August 2010.
- Zhang Y., Tavrin Y., Mück M., Braginski A.I., Heiden C., Hampson S. et al. Magnetoencephalography Using High Temperature rf SQUIDs. Brain Topography. 1993. No5(4). Р. 379-382.
- Barthelmess H., Halverscheid M., Schiefenhövel B., Heim E., Schilling M., Zimmerman R. HTS-Multichannel-System for Magnetocardiography and Magnetoencephalography / BIOMAG 2000 Conference 2001. Р. 927-930.
- Faley M.I., Jia C.L., Poppe U., Houben L., and Urban K. Meandering of the grain boundary and d-wave effects in high-Tc bicrystal Josephson junctions / Superconductor Science and Technology. 2006. V. 19. Р. S195-S199.
- Faley M.I., Poppe U., Dunin-Borkowski R.E., Schiek M., Boers F., H Chocholacs., Dammers J., Eich E., Shah N.J., Ermakov A.B., Slobodchikov V.Yu., Maslennikov Yu.V., and Koshelets V.P. Magnetoencephalography using a multilayer high-Tc DC SQUID magnetometer // Physics Procedia. 2011. V. 27.
- Nenonen J., Montonen J., and Katila T. Thermal noise in biomagnetic measurements // Rev. Sci. Instrum. 1996. V. 67(6). Р. 2397-2405.
- Chen K.L., Yang H.C., Ko P.C., Horng H.E. Characterization of dual high transition temperature superconducting quantum interference device first-order planar gradiometers on a chip // J Appl Phys. 2010. V. 108. No.064503(4).
- Faley M.I. Epitaxial oxide heterostructures for ultimate high-Tc quantum interferometers. Chapter in book «Applications of High-Tc Superconductivity». ISBN 978-953-307-308-8. Edited by Adir Luiz. InTech. Rijeka. Croatia. 2011. Р. 147-176.
- Фалей М.И., Масленников Ю.В. Сверхпроводниковая измерительная система для обнаружения магнитных примесей в конструкционных материалах // Радиотехника и электроника. 2005. Т. 50. №6. С. 759-765.
- Фалей М.И., Масленников Ю.В. Чувствительная магнито-кардиографическая измерительная система с рабочей температурой 77 К // Биомедицинские технологии и радиоэлектроника. 2004. № 8-9. С. 82-87.