350 rub
Journal Radioengineering №3 for 2011 г.
Article in number:
Thermal Feedback in Transistor Oscillators
Authors:
A.V. Kononov, D.P. Zarapkin
Abstract:
This paper deals with intrinsic thermal feedback (ITF) in transistor oscillators, and particularly in those of them using bipolar junction transistors. ITF is an inherent property of any semiconductor device as it arises due to all basic material parameters are temperature dependent. The main topics under discussion are ITF impact on oscillator steady-state regime stability and noise. The usual approach to an oscillator analysis uses the only nonlinear differential equation describing the first harmonic energy balance. But a practical oscillator is controlled with at least two additional feedback loops: one describes its inertial auto-biasing network, another - inertial changes of transistor active zone temperature induced with dissipated power fluctuations. Thus, the oscillator steady-state regime has to appear as a joint solution of the three nonlinear differential equations. The corresponding analysis reveals conditions when ITF in conjunction with the inertial auto-biasing could upset the steady-state regime stability. The closer an oscillator to a threshold of instability the more noise. In general case ITF acts like some effective built-in filter which colors additionally the noise spectra.
Pages: 78-84
References
  1. Nuttinck S., Gebara E., Laskar J., Harris H.M. Study of self-heating effects, temperature-dependent modeling, and pulsed load-pull measurements on GaN HEMTs // IEEE Trans.
  2. Microwave Theory and Tech. 2001. V. MTT-49. № 12. P. 2413-2420.
  3. Snowden C.Large-signal microwave characterization of AlGaAs/GaAs HBT-s based on a physics-based electrothermal model // IEEE Trans. Microwave Theory and Tech. 1997. V. MTT-45. №. 1. P. 58-71.
  4. Ce-Jun Wei, Hwang J.C.M., Wu-Jing Ho, Higgins J.A. Large-signal modeling of self-heating, collector transit-time, and RF-breakdown effects in power HBT-s // IEEE Trans. Microwave Theory and Tech. 1996. V. MTT-44. № 12. P. 2641-2647.
  5. Grossman P.C., Choma J., Jr.Large signal modeling of HBT-s including self-heating and transit-time effects // IEEE Trans. Microwave Theory and Tech. 1992. V. MTT-40. № 3. P. 449-464.
  6. Царапкин Д.П., Молчанов С.Н. Влияние тепловой инерционности на шумовые характеристики генератора СВЧ // Радиотехника. 1985. № 9. С. 35-38.
  7. Евтянов С.И. О связи между символическими и укороченными уравнениями. Радиотехника. 1946. Т. 1. № 1. С. 68-79.
  8. Белов Л.А., Богачев В.М., Благовещенский М.В. и др. Устройства генерирования и формирования радиосигналов: Учебник для вузов / под ред. Г.М. Уткина, В.Н. Кулешова и М.В. Благовещенского. М.: Радио и связь. 1994. 416 с.
  9. Се Си. Общее характеристическое уравнение для исследования устойчивости стационарного режима автогенераторов // Радиотехника и электроника. 1958. Т. 3. № 6. С. 770-776.
  10. Степаненко И.П.Основы теории транзисторов и транзисторных схем. 4-е изд., перераб. и доп. М.: Энергия. 1977. 672 с.
  11. Аронов В.Л., Баюков А.В., Зайцев А.А. и др. Полупроводниковые приборы: Транзисторы. Справочник / под общ. ред. Н.Н. Горюнова. 2-е изд., перераб. М.: Энергоатомиздат. 1985. 904 с.