350 rub
Journal Radioengineering №2 for 2011 г.
Article in number:
Correlation Characteristics of Navigational Meander Noise Simulated Signals (BOC-signals)
Keywords:
BOC-signal
BOC-modulation
BOC-envelope
symbolic signal
meandering oscillation
correlation function of BOC- envelope
correlation function of BOC-signals
Authors:
O.A. Stetsenko
Abstract:
Mathematical model for BOC-signal accounting the special feature of BOC-modulation has been presented in the article. The definition for the symbolic signal used to transmit one code symbol has been introduced. At BOC-modulation the symbolic signal is the length of the meandering oscillation with its duration equal to the clock time. The code symbol sign change causes the change of the initial phase of meandering oscillation by π quantity. The sequence of the lengths of meandering oscillation with their initial phases changeable in accordance to the preset binary code creates the so-called BOC-envelope.
On the basis of the correlation function of BOC-envelope in the usual way the correlation function of BOC-signal has been defined. Two means for the correlation function of BOC-envelope calculation has been used. In the first mean for BOC-envelope the time descriptionis used. In the second mean for BOC-envelope the spectral description is used. On the basis of the suggested mathematical model for BOC-envelope a formulas for their correlation function calculation has been received. Graphics of the correlation functions are reduced.
Correlation characteristics of BOC-signals depending on parameters of the symbolic signal and code are discussed. The increase of the symbolic signal coefficient of multiplicity results in the increase of the correlation peak and interval of correlation. The more coefficient of multiplicity of symbolic signal the more relative level of the maximal side correlation peak we have. The increase of the code length results in the increase of the correlation peak and interval of correlation.
Pages: 4-8
References
- Betz J.W. The Offset Carrier Modulation for GPS Modernization. Proceeding of the National Technical Meeting of the Institute of Navigation (ION - NTM-99), January. 1999.
- Betz J.W. Binary Offset Carrier Modulation for Radionavigation // Journal of ION. Navigation. 2001-2002. V. 48. № 4.
- Gerein N., Olynik M., Clayton M. Galileo BOC (1, 1) Prototype Receiver Development // Proceeding of the Institute of Navigation-s GNSS. September. 2004.
- Burian A., Lohan E., Renfors M. Filter Design Considerations for Acquisition of BOC-modulated Galileo Signals. - CD ROM. Proceeding of the 16 Annual IEEE International Symposium on Personal and Mobile Radio Communications. Berlin, Germany. September. 2005.
- Barker B.C., Betz J.W., Clark J.E., Correia J.T., Gillis J.T., Lazar S., Rehborn K.A. Overview of the GPS M Code Signal // Proceeding of the National Technical Meeting of the Institute of Navigation (ION ? NTM-2000). January. 2000.
- Ярлыков М.С. Меандровые шумоподобные сигналы (ВОС-сигналы) в новых спутниковых радионавигационных системах // Радиотехника. 2007. № 8.
- Ярлыков М.С. Косинусные меандровые шумоподобные сигналы (CosВОС-сигналы) в спутниковых радионавигационных системах нового поколения // Радиотехника. 2009. № 7.
- Стеценко О.А. Алгоритм расчета спектральных характеристик навигационных меандровых шумоподобных сигналов (ВОС-сигналов) // Радиотехника. 2009. № 7.
- Ярлыков М.С. Корреляционные функции одиночных символов меандровых сигналов в спутниковых радионавигационных системах нового поколения // Радиотехника и электроника. 2009. № 8.
- Стеценко О.А. Радиотехнические цепи и сигналы. М.: Высшаяшкола. 2007.