350 rub
Journal Radioengineering №12 for 2011 г.
Article in number:
The Linear Speed Change Model of the Air Target, Maneuvering in the Horizontal Plane
Authors:
R.R. Shatovkin, O.I. Sentyabov, S.N. Danilov, V.A. Malyshev
Abstract:
In implementing the homing fighter for aerial target key information parameters are target range, speed of approach to the fighter and the angular coordinates of the target, measured, mostly airborne radar. That is, for secondary processing of information requires the use of these particular models of change in motion parameters. At the same time such an important parameter for guidance, as the linear velocity of an air target, aboard a fighter can not be measured, and used its average value. This is a significant disadvantage to the fighter homing air target. It is possible to determine the linear speed maneuvering air targets on board a fighter for information about the parameters of the rotational motion of goals coming from the optical-electronic system. The presence of primary non-radar measurements of the rate requires the implementation of secondary processing. This, in turn, leads to the necessity of synthesis algorithm of estimation of linear speed maneuvering air target based on an appropriate model. Thus, there arises the problem of model changes in line speed maneuvering air targets. In this aerial target can maneuver in the vertical plane in the horizontal plane or to maneuver in space. Therefore, it is expedient to create a model of linear speed change maneuver an air target in view of the plane to maneuver. Based on experimental data obtained during the processing of flight information recorded on board a modern fighter aircraft performing maneuvers in the horizontal plane, was developed a statistical model of linear rate of change of air targets, maneuvering in the horizontal plane. The results of these studies have confirmed the efficacy of this model for use in secondary processing algorithm (for example, a Kalman filter) measurement of the linear speed maneuvering air targets optical-electronic system.
Pages: 12-17
References
  1. Шатовкин Р.Р. Моделирование функционирования системы управления вооружением истребителя в режиме радиолокационного молчания. Монография. Воронеж: Издательство ВАИУ. 2010. 328 с.
  2. Зингер Р. Оценка характеристик оптимального фильтра для слежения за пилотируемой целью // Зарубежная радиоэлектроника. 1971. № 8. С. 40-57.
  3. Глухов С.П. и др. Основы статистической теории радиотехнических систем: курс лекций. Тамбов: ТВВАИУ. 1996. 419 с.
  4. Мильграм Ю.Г., Слабкий Л.И. Основы экспериментальных исследований (Техника физического эксперимента и статистические основы экспериментальных исследований и оценок) / под ред. Ю.Г. Мильграма. М.: ВВИА им. Н.Е. Жуковского. 1983. 403 c.
  5. Горяинов В.Т., Журавлев А.Г., Тихонов В.И.Статистическая радиотехника: примеры и задачи / под ред. В.И. Тихонова. М.: Сов. радио. 1980. 544 с.
  6. Пудовкин А.П., Панасюк Ю.Н. Синтез алгоритмов функционирования дальномерного канала автоматизированных систем управления воздушным движением при сопровождении воздушных целей с учетом их вектора скорости // Радиотехника. 2010. № 12.
  7. Панасюк Ю.Н., Иванков А.А. Влияние информации бортовых датчиков на точность следящих АСУ УВД при сопровождении маневрирующих воздушных судов //Радиотехника. 2010. № 11. С. 41-45.
  8. Иванов А.В. Комплексные оптимальные алгоритмы обработки информации в навигационных системах подвижных наземных объектов // Радиотехника. 2010. № 5. С. 12-17.