350 rub
Journal Radioengineering №9 for 2010 г.
Article in number:
Analysis of the Side Clutter Echoes of the Space-Borne Subsurface Radar Using the High Resolution Images
Authors:
Ya.A. Ilyushin
Abstract:
Orbiting radar sounders are the promising tool for exploration of the planetary interiors. In particular, the great achievements in the Mars exploration have been made with the MARSIS and SHARAD radar instruments. The side clutter echoes, coming from the rough planetary surface, are the most significant factor limiting the instrument capabilities. Known models of the side clutter are mostly based on the topographic data base provided by the MOLA instrument, the lateral resolution of which is on the order of several hundred meters. This prevents retrieval of any information about the smaller surface features, which have size from up to several tens of the radar instrument wavelengths. High performance optical instruments of the new generation (MOC, CTX, HiRise etc.) provided huge sets of the high resolution surface images. Immediate retrievals of the surface roughness parameters from them are difficult for many reasons. The objective of this study is to incorporate the high resolution surface images into the subsurface radar data processing algorithms. In the present paper, the possible approaches to estimate the statistical parameters or the rough planetary surface are discussed. Some images of high polar regions of Mars are analyzed, and the corresponding radar signal simulations have been performed. Thus, the possibility of incorporation of the high resolution planetary surface images in the radar signal processing schemes has been established in the present paper.
Pages: 105-111
References
  1. Peeples, W., Sill W., May T., Ward S., Phillips R., Jordan R., Abbott E., and Killpack T. Orbital Radar Evidence for Lunar Subsurface Layering in Maria Serenitatis and Crisium // J. Geophys. Res. 1978. 83(B7). Р. 3459-3468.
  2. Picardi G., Biccari D., Seu R. et al. Performance and surface scattering models for the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) // Planetary and Space Science. 2004. V.52. P.149-156.
  3. Seu R., Biccari D., Orosei R., Lorenzoni, L., Phillips, R., Marinangeli, L., Picardi, G., Masdea, A., Zampolini, E. SHARAD: the MRO 2005 shallow radar // Planet. Space Sci. 2004. V.52. P.157-166.
  4. Abshire James B., Sun Xiaoli, and Afzal Robert S. Mars Orbiter Laser Altimeter: Receiver Model and Performance Analysis // Appl. Opt. 2000. V. 39. P. 2449-2460.
  5. Beckmann, P. and Spizzichino A. The Scattering of Electromagnetic Waves from Rough Surfaces. Macmillan and Company. NY. 1963.
  6. Ogilvy, J.A. Theory of Wave Scattering from Random Rough Surfaces. Adam Hilger. Bristol. 1991.
  7. Kreslavsky, M.A., and Head J.W. III Kilometer-scale roughness of Mars: results from MOLA data analysis // J. Geophys. Res. 2000 105(E11). 26,695-26,711. doi:10.1029/2000JE001259.
  8. Orosei R., Bianchi R., Coradini A., Espinasse S., Federico C., Ferriccioni A., and Gavrishin A. I. Self-affine behavior of Martian topography at kilometer scale from Mars Orbiter Laser Altimeter data J. Geophys. Res. V. 108, N. E4, 8023, doi:10.1029/2002JE001883, 2003.
  9. Campbell, B. A., Ghent R. R. and Shepard M. K. Limits on inference of Mars small-scale topography from MOLA data Geophys. Res. Lett., V.30. N.3. 1115. doi:10.1029/2002GL016550, 2003.
  10. Nouvel J.-F., Herique A., and Kofman W. and Safaeinili A. Radar signal simulation: Surface modeling with the Facet Method // Radio Sci. 2004. V. 39. RS1013. doi:10.1029/2003RS002903.
  11. Malin, M. C., and Edgett K. S. (), Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission // J. Geophys. Res. 2001. 106(E10). 23. P. 429 - 23.570.
  12. Malin M. C., Bell J. F. III, Cantor Bruce A. et al. Context Camera Investigation on board the Mars Reconnaissance Orbiter // J. Geophys. Res. 2007. V. 112. E05S04. doi:10.1029/2006JE002808,
  13. McEwen, A. S., Eliason E. M. , Bergstrom J. W. et al. Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) // J. Geophys. Res. 2007. 112. E05S02. doi:10.1029/2005JE002605.
  14. Xu Y., Cummer S.A., and Farrell W.M. Application of an orbital radar sounder model to detecting martian polars subsurface features // J. Geophys. Res. 2006. 111(E6):E06S17. doi:10.1029/2005JE002547.
  15. Ilyushin, Ya.A. Radiative transfer in layered media: application to the radar sounding of Martian polar ices. II. // Planetary and Space Science. 2007. V.55. No. 1-2. P.100-112. doi:10.1016/j.pss.2006.05.025
  16. Milkovich, S.M., Plaut, J.J., Safaeinili, A., Picardi, G., Seu, R., Phillips, R.J. Stratigraphy of promethei lingula, south polar layered deposits, Mars, in radar and imaging data sets // J. Geophys. Res. 2009. V. 114. No. E3, 20 March. Article number E03002.
  17. Zhang, Z., Hagfors, T., Nielsen, E., Picardi, G., Mesdea, A., Plaut, J.J. Dielectric properties of the Martian south polar layered deposits: MARSIS data inversion using Bayesian inference and genetic algorithm // J. Geophys. Res. 2008. V. 113. No. E5. 20 May. Article number E05004.
  18. Mushkin A. and Gillespie A. R.Mapping sub-pixel surface roughness on Mars using high-resolution satellite image data // Geophys. Res. Lett. 2006. V. 33. L18204. doi:10.1029/2006GL027095.
  19. http://www.msss.com/
  20. Рытов С. М., Кравцов Ю. А., Татарский В. И. Введение в статистическую радиофизику. М.: Наука. 1978.
  21. Harris F.J. On the use of Windows for Harmonic Analysis with the Discrete Fourier Transform // Proceedings of the IEEE. 1978. V.66. No.1. P.51-83.
  22. Давенпорт В.Б., Рут В. Л. Введение в теорию случайных сигналов и шумов. М.:ИИЛ. 1960.