350 rub
Journal Radioengineering №5 for 2009 г.
Article in number:
Two-channel Cophased Power Divider with Extended Cross Coupling Frequency Band
Authors:
V.D. Mappyrov, V.A. Pechurin, A.S. Petrov
Abstract:
In the work, it is proposed to connect a serial oscillatory circuit, tuned to the working band central frequency, to the resistive element of the basis circuit in order to broaden a cross coupling frequency band of the Wilkinson two-channel cophased power divider. Wave impedance Zc of the circuit is determined with using optimization on personal computer. Two schemes of the power divider are considered. They are differ by the value of a characteristic impedance of a line connected to the input arm 1 and equal to Z1=1 and 0.5, respectively. Characteristic impedances of quarter-wave transformer lines in these two schemes are ZT=? and 1, respectively. Choosing the value of the normalized wave impedance of the oscillatory circuit Zc=2.15 and resistor impedance value R=1.92, we obtain the relative frequency band width equal to 47.9% for cross coupling at the level of 30dB whereas the frequency band width of the original circuit is equal to 11.2%. For cross coupling at the level of 20dB the frequency band width equals 74.4.% in comparison with the width 36.6% of the original circuit. Thus the frequency band broadening factor is equal approximately to 4 and 2 for two measuring levels of cross coupling. The benefit of the second circuit considered in the article is in the fact that it has the same dependence of power reflection coefficients from the sides of arms 2 and 3, expressed in decibels, as the analogous dependence of cross coupling
Pages: 57-59
References
  1. Wilkinson E.J. An N-hybrid power divider // IRE Trans. on Microwave Theory and Techniques. 1960. V. MTT-8. № 1. P. 116-118.
  2. Кузовкин И.Н., Петров А.С. Миниатюрные СВЧ устройства деления-суммирования мощности (Обзор) // Успехи современной радиоэлектроники. 2004. № 12. С. 12-46.
  3. Cohn S. B. A new class of broadband three-port TEM-mode hybrids // IEEE Trans. on Microwave Theory and Techniques. 1968. V. MTT-16. N. 2. P. 110-116.
  4. Wu L., Sun Z., Yilmaz H., Berroth M. A Dual-Frequency Wilkinson Power Divider // IEEE Trans. on microwave theory and techniques. 2006. vol. 54. No. 1. P. 278-284.
  5. Gysel U.H. A New N-Way Power Divider/Combiner Suitable for High-Power Applications // International Microwave Symposium Digest of Technical Papers. 1975 MTT-S. P. 116-118.
  6. Ahn H.-R., Wolff I. General design equations, small-sized impedance transformers, and their application to small-sized three-port 3-dB power dividers // IEEE Trans. on Microwave Theory and Techniques. 2001. V. MTT-49. N.7. P. 1277-1288.
  7. Scardelletti M.C., Ponchak G.E., Weller T.M. Miniaturized Wilkinson Power Dividers Utilizing // IEEE Microwave and wireless components letters. 2002. V.12, N. 1. Р.6-8.
  8. Lu L.-H., Liao Y.T., Wu Ch.R. A Miniaturized Wilkinson Power Divider With CMOS Active Inductors // IEEE Microwave and wireless components letters. 2005. V. 15. N. 11. P. 775 - 777.
  9. Piernas B., Hirata M. Enhanced Miniaturized Wilkinson Power divider // IEEE MTT-S Digest. 2003. Р. 1255-1258.
  10. Разевиг В.Д., Потапов Ю.В., Курушин А.А. Проектирование СВЧ-устройств с помощью Microwave Office. - Солон-Пресс. 2003. С. 496.
  11. Кузовкин И.Н., Петров А.С. Схемы-прототипы 4-плечных гибридных кольцевых делителей мощности // Радиотехника и электроника. 2004. Т. 49. № 8. С. 919-926.