350 rub
Journal Radioengineering №4 for 2009 г.
Article in number:
Realizability and Other Features of the Ideal Contour Element Pattern in Planar Phased-Array Antennas
Authors:
S.P. Skobelev
Abstract:
An infinite planar array of controlled elements in the form of overlapped subarrays excited through a multiport circuit is considered. It is analytically shown that the contour element (subarray) pattern with an ideal contour shape corresponding to the absence of backward mutual coupling and, as a consequence, to the 100% element efficiency can be exactly formed at a definite amplitude distribution over the densely arranged small ideal subarray radiators in spite of the fact that each such a radiator in the subarray has low efficiency caused by the presence of backward mutual coupling. The orthogonality properties of the ideal contour element patterns and similar properties of the corresponding amplitude distributions are also proved.
Pages: 71-76
References
  1. Вендик О. Г. Синтез линейки излучателей с немеханическим качанием луча // Известия вузов. Радиотехника. 1960. Т. 3. № 1.
  2. Hannan P. W. The element-gain paradox for a phased-array antenna // IEEE Transactions on Antennas and Propagation. 1964. V. 12. No. 4.
  3. Амитей Н., Галиндо В., Ву Ч.-П. Теория и анализ фазированных антенных решеток. М.: Мир. 1974.
  4. Kahn W. K. Ideal efficiency of a radiating element in an infinite array // IEEE Transactions on Antennas and Propagation. 1967. V. 15. No. 4.
  5. Skobelev S. P. On the ideal element pattern in planar phased array antennas // Dig. of the 2003 IEEE AP-S Int. Symp., Columbus, OH. 2003. V. 2.
  6. Скобелев С. П. Некоторые свойства идеальной диаграммы направленности элемента в плоских фазированных антенных решетках // Радиотехника (Журнал в журнале). 2007. №4.
  7. Skobelev S. P. On the ideal gain of a radiating element in a planar array // Proc. of the 12th Internat. Conf. on Mathematical Methods in Electromagnetic Theory (MMET'08), Odessa, Ukraine, June 29 - July 2. 2008.
  8. Mailloux R. J. Phased array antenna handbook. Norwood, MA: Artech House. 1994.
  9. Скобелев С. П. Методы построения оптимальных фазированных антенных решеток для сканирования в ограниченном секторе // Электромагнитные волны и электронные системы. 1998. Т. 3. № 2.
  10. Skobelev S. P. Methods of constructing optimum phased-array antennas for limited field of view // IEEE Antennas and Propagation Magazine. 1998. V. 40. No. 2.
  11. Hannan P. W. Proof that a phased-array antenna can be impedance matched for all scan angles // Radio Science. 1967. V. 3. No. 3.
  12. Kehn M. N. M., Kildal P.-S., Fundamental limitations of focal plane arrays characterized in terms of radiation efficiencies of their embedded element patterns // Proc. 2006 IEEE AP-S Int. Symp., Albuquerque, NM. 2006.
  13. Ivashina M. V., Kehn M. N. M., Kildal P.-S., Maaskant R. Control of reflection and mutual coupling losses in maximizing efficiency of dense focal plane arrays // Proc. European Conf Antennas Propag. (EuCAP), Nice, France, 6-10 November 2006.
  14. Ivashina M. V., Kehn M. N. M., Kildal P.-S., Franzen M. Radiation efficiency as a fundamental limitation of wideband dense arrays for multi-beam applications // Proc. 29th ESA Antenna Workshop on Multiple Beams and Reconfigurable Antennas, ESTEC, Noordwijk, The Netherlands, 18-20 Apr. 2007.
  15. Harmuth H. F. Transmission of Information by Orthogonal Functions. Springer. 1970.