350 rub
Journal Radioengineering №4 for 2009 г.
Article in number:
Asymptotic Properties of Diffraction Coefficients of Ideal Conduction Sphere Are Researched
Authors:
A.I. Ladigin, E.V. Kuznetsov, A.A. Luchin, Yu. S. Chesnokov
Abstract:
Sphere is the only finite body, that exact solution of diffraction electromagnetic wave is solved. That`s why sphere is the only absolute standard for checking different hypothesis of diffraction theory. In 2008 there will be 100 years since the day publication of the strict solution of diffraction by German physicist Gustav Mie, the Physics Institution director in Graysfald [1]. This solution is considered to be classic, because it`s expressed through Bessel`s function`s. Nowever, it wasused only in 1945, when A. and F. Zauter published in a secret report of the Physics Institution in Munchen on the calculating radar crossection of conduction sphere. By Logan, the type function surprised scientists so much, that it was called «resonance» [5].After academician A. Foks another point of view was confirmed- is explained by interferential too types waves [2]. However it's not clear, why summing of harmonic function in Mie`s solution with asymptotic arguments (2) is given periodical process with arguments (2+). So it`s necessary to make a new research of asymptotic properties of diffraction coefficients of ideal conduction sphere.
Pages: 29-33
References
  1. Mie G. Beiträge zur Optik nrüber Nedien, speziel kolloidale Metallösunger. // Ann. d.Physik. 1908. Vol. 25.
  2. Логан Н. Обзор некоторых ранних работ по теории рассеяния плоских волн на сфере. М.: Мир. ТИИЭР. 1965. №8.
  3. Фок В.А. Дифракция радиоволн вокруг земной поверхности. М.-Л.: АН СССР. 1946.
  4. Ван де Хюлст Г. Рассеяние света малыми частицами. М.: ИЛ. 1961.
  5. Рейнштейн Дж. Рассеяние коротких электромагнитных импульсов. М.: Мир. ТИИЭР. 1965. №8. С. 1216.
  6. Ладыгин А.И., Лучин А.А. Аппроксимация точного решения задачи дифракции на проводящей сфере. // Электромагнитные волны и электронные системы. 2003. Т.8. №9.
  7. ХрамовЮ.А. Физики. Биографическийсправочник. М.: Наука. 1983.