350 rub
Journal Radioengineering №3 for 2009 г.
Article in number:
Multifrequency Wideband Antennas Based on Fractal Structures of Different Types
Authors:
S.V. Krupenin, V.V. Kolesov, A.A. Potapov, E.N. Matveev
Abstract:
Two types of fractal antennas (regular and irregular) are studied by means of numerical analysis. A novel deterministic irregular fractal structures for antenna design are introduced. Deterministic fractal clusters for antenna design were built within modified numerical aggregation models of two types. The first model was introduced by Thouy and Jullien and represents cluster-cluster aggregation. The second one, also known as DLA model, was introduced by Witten and Sander and represents particle-cluster aggregation. Both aggregation models were modified to obtain reproducible aggregates of the same fractal structure. Such modification implies utilization of chaotic integer algorithm with delay for pseudorandom sequence generation. 2D pseudorandom fractal clusters were built within both modified aggregation models. 3D cluster was built within modified Witten-Sander model. Microstrip and monopole antennas are based on 2D and 3D geometries, respectively. The multifrequency and wideband behavior of irregular fractal antennas is described. The behavior of the microstrip irregular fractal antennas is studied under excitation point displacement. Such reconfiguration is shown to control spatial-frequency antenna characteristics. Excitation point displacements allow to allocate frequency bands and/or vary radiation pattern of the irregular fractal antennas. The multiband behavior of regular fractal antennas based on Sierpinski gasket and Cayley tree is described. Resonant features of Sierpinski monopole antenna are studied under variations of the flare angle of Sierpinski gasket. Keywords: antennas, fractal antennas, fractal clusters, multifrequency antennas, wideband antennas, reconfigurable antennas.
Pages: 70
References
  1. Мандельброт Б. Фрактальная геометрия природы: Пер. с англ. А.Р. Логунова. - М.: Институт компьютерных исследований, 2002.
  2. Sabatier J., Agrawal O.P., Tenreiro J.A. Machado (eds.). Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Dordrecht: Springer, 2007.
  3. Freund J.A., Pöschel Th. (eds.). Stochastic Processes in Physics, Chemistry and Biology. - Berlin, Heidelberg, New York: Springer-Verlag, 2000.
  4. Jaggard D.L. On Fractal Electrodynamics. In: H. N. Kritikos, D. L. Jaggard (eds.). Recent Advances in Electromagnetic Theory. - New York: Springer-Verlag, 1990, pp.183-224.
  5. Werner D.H. An Overview of Fractal Electrodynamics Research. - Proceedings of the 11th Annual Review of Progress in Applied Computational Electromagnetics (ACES) 1995, II, pp.964-969.
  6. Romeu J., Rahmat-Samii. Y. Fractal FSS: A Novel Dual-Band Frequency Selective Surface. - IEEE Trans. Antennas Propagat., 2000, 48(7), pp.1097-1105.
  7. Фионов А.С., Юрков Г.Ю., Потапов А.А., Колесов В.В., Таратанов Н.А. Перспективные наноструктурированные полимерные композиционные материалы для физических исследований их методами фрактального анализа. - Нелинейный мир, 2008, 6(1), с.37-41.
  8. Pentland A.P. Fractal-based description of natural scenes. - IEEE Trans. Pattern Anal. Machine Intell., 1984, 6(6), pp.661-674.
  9. Потапов А.А. Синтез изображений земных покровов в оптическом и миллиметровом диапазонах волн. Дисс. докт. физ.-мат. наук. - М.: ИРЭ РАН, 1994.
  10. Bardou F., Bouchaud J.-P., Aspect A., Cohen C. Tannoudji. Lévy Statistics and Laser Couling. How Rare Events Bring Atoms to Rest. - New York: Cambridge University Press, 2003.
  11. Liouville J. Mémoire sur le changement de la variable dans le calcul des différentielles à indices quelconques. - J. Ecole Polytech., 15, pp.17-54, 1835.
  12. Riemann B. Versuch einer Auffassung der Integration und Differentiation. - Leipzig: Teubner, 1847.
  13. Потапов А.А. Фракталы в радиофизике и радиолокации: Топология выборки. - М.: Университетская книга, 2005.
  14. Kim Y., Jaggard D.L. The Fractal Random Array. - Proc. IEEE, 1986, 74(9), pp.1278-1280.
  15. Cohen N. Fractal Antennas: Part I. Communications Quarterly, summer 1995, pp.7-22.
  16. Rumsey V.H. Frequency Independent Antennas. - New York: Academic Press, 1966
  17. Puente-Baliarda C., Romeu J., Pous R., Cardama A. On the Behavior of the Sierpinski Multiband Fractal Antenna. - IEEE Trans. Antennas Propagat., 1998, 46(4), pp.517-524.
  18. Balanis C.A. Antenna Theory: Analysis and Design. - New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, 1997.
  19. http://www.fractenna.com/
  20. http://www.fractus.com/
  21. Song C.T.P., Hall P.S., Ghafouri-Shiraz H. Perturbed Sierpinski Multiband Fractal Antenna With Improved Feeding Technique. - IEEE Trans. Antennas Propagat., 2003, 51(5), pp.1011-1017.
  22. Anguera J., Martínez-Ortigosa E., Puente C., Borja C., Soler J. Broadband Triple-Frequency Microstrip Patch Radiator Combining a Dual-Band Modified Sierpinski Fractal and a Monoband Antenna. - IEEE Trans. Antennas Propagat., 2006, 54(11), pp.3367-3373.
  23. Puente Baliarda C., Romeu J., Cardama A. The Koch Monopole: A Small Fractal Antenna. - IEEE Trans. Antennas Propagat., 2000, 48(11), pp.1773-1781.
  24. Best S.R. On the Performance Properties of the Koch Fractal and Other Bent Wire Monopoles. - IEEE Trans. Antennas Propagat., 2003, 51(6), pp.1292-1300.
  25. Borja C., Romeu J. On the Behavior of Koch Island Fractal Boundary Microstrip Patch Antenna. - IEEE Trans. Antennas Propagat., 2003, 51(6), pp.1281-1291.
  26. Anguera J., Puente C., Martínez E., Rozan E. The Fractal Hilbert Monopole: a Two-Dimensional Wire. Microwave Opt. Technol. Lett., 2003, 36(2), pp.102-104.
  27. Zhu J., Hoorfar A., Engheta N. Bandwidth, Cross-Polarization, and Feed-Point Characteristics of Matched Hilbert Antennas. - IEEE Antennas Wireless Propagat. Lett., 2003, 2, pp.2-5.
  28. Zhu J., Hoorfar A., Engheta N. Peano Antennas. - IEEE Antennas Wireless Propagat. Lett., 2004, 3, pp.71-74.
  29. Потапов А.А., Матвеев Е.Н., Потапов В.А. Фрактальная антенна «древо Кейли»: расчеты, анализ и компьютерные эксперименты. «Новые информационные технологии». - Тезисы докл. XIV Международной студенческой школы-семинара. - М.: МГИЭМ, 2006, 1, с.62-63.
  30. Puente C. , Claret J., Sagués F., Romeu J., López-Salvans M.Q., Pous R. Multiband properties of a fractal tree antenna generated by electrochemical deposition. - Electron. Lett., 1998, 32(25), pp.2298-2299.
  31. Rmili H., El Mrabet O., Floc-h J.-M., Miane J.-L. Study of an Electrochemically-Deposited 3-D Random Fractal Tree-Monopole Antenna. - IEEE Trans. Antennas Propagat., 2007, 55(4), pp.1045-1050.
  32. Болотов В.Н., Денисов С.В., Киричок А.В., Ткач Ю.В. Фрактальная антенна дендритного типа. Труды 9-й международной Крымской конференции «СВЧ-техника и телекоммуникационные технологии» КрыМиКо-1999, 1, с.185-187.
  33. Смирнов Б.М. Фрактальные кластеры. - УФН, 1986, 149(2), с.177-219, .
  34. Жюльен Р. Фрактальные агрегаты. - УФН, 1989, 157(2), с.339-357.
  35. Федер Е. Фракталы: Пер. с англ. Ю.А. Данилова и А. Шукурова. - М.: Мир, 1991.
  36. Thouy R., Jullien R. A Cluster-Cluster Aggregation Model with Tunable Fractal Dimention. - J. Phys. A: Math. Gen., 1994, 27, pp.2953-2963.
  37. Witten T.A., Sander L.M. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. - Phys. Rev. Lett., 1981, 47(19), pp.1400-1403.
  38. Meakin P. Diffusion-Controlled cluster formation in 2-6-dimentional space. - Phys. Rev. A, 1983, 27(3), pp.1495-1507.
  39. Botet R., Jullien R. Diffusion-Limited Aggregation with Disaggregation. - Phys. Rev. Lett., 1985, 55(19), pp.1943-1946.
  40. Беляев Р.В., Воронцов Г.М., Колесов В.В. Случайные последовательности, формируемые нелинейным алгоритмом с запаздыванием. - РЭ, 2000, 45(12), с.954-960.
  41. Puente C., Romeu J., Bartolemé R., Pous R. Perturbation of the Sierpinski antenna to allocate operating bands. Electron. Lett., 1996, 32(24), pp.2186-2188.
  42. Puente Baliarda C., Borja Borau C., Navarro Rodero M., Romeu Robert J. An Iterative Model for Fractal Antennas: Application to the Sierpinski Gasket Antenna. -IEEE Trans. Antennas Propagat., 2000, 48(5), pp.713-719.
  43. Petko J.S., Werner D.H. Miniature Reconfigurable Three-Dimensional Fractal Tree Antennas. -IEEE Trans. Antennas Propagat., 2004, 52(8), pp.1945-1956.
  44. Gonzalez-Arbesu J.M., Rius J.M., Romeu J. Comments on: On the relationship between fractal dimension and the performance of multiresonant dipole antennas using Koch curves. -IEEE Trans. Antennas Propagat., 2004, 52(6), pp.1626-1627.
  45. Multifrequency Wideband Antennas Based on Fractal Structures of Different Types 83.