Journal Nonlinear World №3 for 2025 г.
Article in number:
Smoothing out tariff class protection and secondary recovery in demand
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202503-05
UDC: 621.396
Authors:

D.A. Sharipov1

1 Financial University under the Government of the Russian Federation (Moscow, Russia)
1 dasharipov@fa.ru

Abstract:

The relevance of the study is due to the need to develop operational tools for the revenue management system (RMS) of civil aircraft in the air transportation sector.

Objective – development of an original method for optimizing secondary demand recovery for air tickets and improving the efficiency of forecasting the occupancy of the cabin (or cabin) of an aircraft in the revenue management system (IMS).

The paper presents an original optimization method for secondary demand recovery for opening and closing tariff classes of an aircraft in the civil air transportation sector. The essence of the method lies in the redistribution of demand using a probabilistic fractal parameter. The proposed method provides a smoother regulation by tariff classes of air transportation, helping to reduce the risks of unfilled classes and increase efficiency in the IMS field.

A method has been developed that uses a fractal parameter to smooth the primary demand recovery (initial forecast of cabin occupancy), ensuring effective redistribution of booking occupancy by classes, reducing financial risks.

Pages: 37-44
For citation

Sharipov D.A. Smoothing out tariff class protection and secondary recovery in demand. Nonlinear World. 2025. V. 23. № 3. P. 37–44. DOI: https:// doi.org/10.18127/ j20700970-202503-05 (In Russian)

References
  1. Sharipov D.A. Informacionnye tekhnologii optimizacii bol'shih razmernostej v upravlenii dohodami (RMS) aviaperevozok. Informacionno-izmeritel'nye i upravlyayushchie sistemy. 2023. T. 21. № 5. S. 56–62 (In Russian).
  2. Dubinina V.G. Scenarnaya model' ekonomicheskih prognozov aviakompanii. Upravlenie informacionnymi potokami. Sbornik trudov ISA RAN pod red. chlen-korrespondenta RAN V.L. Arlazarova. M.: Editorial URSS. 2005. C. 130–134 (In Russian).
  3. Dubinina V.G. Programmnaya realizaciya analiticheskoj sistemy rascheta rentabel'nosti aviaperevozok. Informacionnye tekhnologii v tekhnicheskih sistemah. M.: IKTI RAN. 2004. № 4. C. 25–30 (In Russian).
  4. Zenkova N. A., Nosova E. V., Fridman G. M. Uchet stohasticheskoj prirody sprosa pri opredelenii optimal'nyh predelov prodazh aviacionnyh biletov: Sbornik nauchi. trudov. Ekonomicheskaya kibernetika. 2008. Vyp. 18. S. 65–68 (In Russian).
  5. Vinogradov L. V., Fridman G. M., Shebalov S. M. Matematicheskoe modelirovanie v optimizacii planirovaniya aviacionnyh perevozok: formulirovki i metody resheniya tipovyh zadach. Nauchnyj vestnik MGTUGA. 2008. S. 49–57 (In Russian).
  6. Borisova L.R., Byvshev V.A., Vladova A.Yu. i dr.; pod red. S.A. Zadadaeva. Cifrovizaciya matematiki v vuze: Monografiya. M.: Prometej. 2021. C. 578 (In Russian).
  7. Zadadaev. S.A. Matematika na yazyke R: uchebnik. Finansovyj universitet pri Pravitel'stve RF. M.: Prometej. 2024. C. 346 (In Russian).
  8. Littlewood K. Forecasting and Control of Passenger Bookings. Proceedings of the 12th AGIFORS Symposium. Nathanya. Israel. October, 1972. P. 95–117.
  9. Weatherford L. R., Polt S. Better unconstraining of airline demand data in revenue management systems for improved forecast accuracy and greater revenues. Journal of Revenue and Pricing Management. 2002. V.1. № 3.
  10. Revenue Management System. Reports of International Conference. IATA. 1997. P. 1–345.
  11. Gillian Jenner. Airport IT Trends. Airline Business. October. 2008.
Date of receipt: 03.06.2025
Approved after review: 11.06.2025
Accepted for publication: 30.06.2025
Download