S.S. Mikhailova1, S.V. Matseevich2, A.S. Zakharov3, D.A. Sharipov4, A.V. Petrovsky5
1–4 Financial University under the Government of the Russian Federation (Moscow, Russia)
3,5 MIREA – Russian Technological University (Moscow, Russia)
1 DMath@fa.ru, 2 cvmac@mail.ru, 3 zakharov.as17@physics.msu.ru, 4 dasharipov@fa.ru,
5 houndsofhade@yandex.ru
The paper shows the problem of improving the efficiency of field crews of energy companies in the context of rapid growth of megacities and increasing the load on the energy infrastructure. The relevance of the study is due to the need to ensure the reliability and continuity of energy supply, which is especially important in the context of decrees and initiatives of the President of the Russian Federation aimed at protecting energy resources and improving the sustainability of the energy system. Development of a model and methodology for predicting emergency situations and assessing the readiness of repair crews and resources, which will allow dispatchers of situation centers to make decisions promptly and minimize the time to restore power supply. The paper proposes a model of an emergency situation that takes into account the parameters of energy infrastructure facilities, such as the probability of an accident, complexity and condition of the facility, as well as the parameters of repair bases, including the condition of vehicles, the level of training of crews and the availability of necessary equipment. The model of an emergency situation is formalized, taking into account the complexity and probable damage. On the basis of the model and the results of calculating the probability of an emergency situation, the indicators of the readiness of the repair team are introduced. The practical significance of the work consists in the creation of a science-based decision support system for operators of the duty shift, which contributes to improving the efficiency and reliability of energy companies in megacities.
Mikhailova S.S., Matseevich S.V., Zakharov A.S., Sharipov D.A.., Pertrovsky A.V. Calculation of readiness indicators of field crews based on the model of complex accidents at critical infrastructure facilities. Nonlinear World. 2025. V. 23. № 3. P. 15–24. DOI: https:// doi.org/10.18127/ j20700970-202503-03 (In Russian)
- Utc S.A., Fedorov Yu.G., Yarosh D.N. O razvitii trebovanij k skheme elektrosnabzheniya megapolisov i perspektive primeneniya tekhnologij Smart Grid. Sb. dokl. konf. «Elektroenergetika glazami molodezhi». T. 1. Ekaterinburg. 2012. S. 56–61 (In Russian).
- Kucherov Yu.N., Utc S.A., Yarosh D.N. Sovremennye tendencii razvitiya elektrosnabzheniya megapolisov s cel'yu povysheniya upravlyaemosti rezhimov raboty energosistemy. Elektrichestvo. 2017. № 6. S. 4–15 (In Russian).
- Majorov A.V., Shuntov A.V., Vasin V.P. Analiz nadezhnosti sistemy elektrosnabzheniya 20 kV v megapolise. Elektrichestvo. 2017. № 1. S. 22–29 (In Russian).
- Voropaj N.I., Kurbackij V.G., Tomin N.V., Panaseckij D.A. Sovershenstvovanie sistemy monitoringa i upravleniya elektricheskimi setyami megapolisov. Energetik. 2016. № 8. S. 3–9 (In Russian).
- Energoeffektivnyj megapolis. Smart City «Novaya Moskva». Pod red. V.V. Bushueva, P.A. Livinskogo. M.: ID «Energiya». 2015. 76 s. (In Russian).
- Voropaj N.I., Stennikov V.A. Integrirovannye intellektual'nye energeticheskie sistemy. Izv. RAN. Ser.: Energetika. 2014. № 1. S. 64–73 (In Russian).
- Voropaj N.I., Stychinski Z.A., Shushpanov I.N. i dr. Model' rezhimnoj nadezhnosti «aktivnyh» raspredelitel'nyh elektricheskih setej. Izv. RAN. Ser.: Energetika. 2013. № 6. S. 70–79 (In Russian).
- Grid 2030: A national vision for electricity’s second 100 years. Office of Electric Transmission and Distribution, US State Department of Energy. Washington. July 2003. 36 p.
- European Smart Grid technology platform: Vision and strategy for Europe’s networks of the future. European Commission. Brussels. 2006. 23 p.
- McDonald J. Adaptive intelligent power systems: Active distribution networks. Energy Policy. 2008. V. 36. № 6. P. 4346–4351.
- Sudakov V.A., Timoshenko A.V., Sokolov K.S., Maceevich S. V. Algoritm podderzhki prinyatiya resheniya operatorom radiolokacionnoj stancii monitoringa kosmicheskogo prostranstva v usloviyah neshtatnoj situacii na osnove gibridnoj funkcii. Sistemy upravleniya, svyazi i bezopasnosti. 2024. № 4. S. 145–157. DOI 10.24412/2410-9916-2024-4-145-157. EDN DEPPJD (In Russian).
- Maceevich S.V., Vladko U.A., Zyuzina A.D. i dr. Primenenie pokazatelya kognitivnoj nagruzki graficheskogo elementa dlya obosnovaniya trebovanij k sisteme vizualizacii RLS dal'nego obnaruzheniya. Nauchnaya vizualizaciya. 2024. T. 16. № 3. S. 87–96. DOI 10.26583/sv.16.3.09. EDN IOQBVG (In Russian).
- Timoshenko A.V., Razin’kov S.N., Savchuk A.M. et al. Ensuring Flight Safety in Aviation through Damage Risk Management in the Aviation System. Russ. Aeronaut. 2024. V. 67. P. 741–748. https://doi.org/10.3103/S1068799824040019.
- Zaharov A.S., Shamanov V.V., Perlov A.Yu., Sokolov K.S., Pozdyshev V.Yu. Mnogoparametricheskaya optimizaciya processa proektirovaniya RLS monitoringa kosmicheskogo prostranstva na osnove ontologicheskogo analiza zavisimostej funkcional'nyh harakteristik ot mnozhestva tekhnicheskih reshenij. Radiotekhnika. 2024. T. 88. № 10. S. 110–117. DOI: https://doi.org/ 10.18127/j00338486-202410-12 (In Russian)
- Feklin V.G., Zaharov A.S., Yastrebov I.D., Savchuk A.M. Povyshenie polnoty dovedeniya informacii pri obryve linij svyazi centra monitoringa kosmicheskogo prostranstva na osnove modificirovannogo algoritma Dejkstry. Nejrokomp'yutery: razrabotka, primenenie. 2024. T. 26. № 6. S. 107–113. DOI 10.18127/j19998554-202406-13. EDN RQYaXW (In Russian).

