350 rub
Journal Nonlinear World №4 for 2024 г.
Article in number:
Classical optimization methods for automated placement of objects on the territory of an industrial enterprise
Type of article: scientific article
DOI: 10.18127/j20700970-202404-03
UDC: 004.021
Authors:

G.O. Vorontsov1, A. V. Kovalenko2, A.V. Ovsyannikova3

1, 2 Kuban State University (Krasnodar, Russia)
3 Financial University under the Government of the Russian Federation (Moscow, Russia)
1 vorontsovgo95@gmail.com, 2savanna-05@mail.ru, 3avovsyannikova@fa.ru

Abstract:

The master plan plays a key role in the successful implementation of an industrial enterprise and its subsequent operation. The high-quality configuration of the master plan makes it possible to ensure efficient use of space, optimal placement of objects (buildings, structures, etc.), compliance with safety standards, as well as taking into account the potential for future development and expansion of the enterprise.

The formation of the master plan is an important link in the creation of documentation for the construction of a manufacturing enterprise. Design engineers are responsible for ensuring the functional zoning of the territory, dividing production, utility and warehouse zones into blocks, observing minimum fire-fighting distances between objects, providing entrances and driveways to buildings and structures, and much more within their competencies.

The master plan is a design document that displays the relative location of technological installations, buildings, structures, roads and railways, tank farms, drain-filling and technological overpasses, engineering communications, as well as auxiliary facilities. Documentation ensures consistency between related disciplines. Due to the high importance of this document for the construction and operation of the plant, automation of the design process of the master plan is required. The paper proposes an approach to the layout of the master plan based on combinatorial optimization using classical computational methods: the full iteration method, the branch and boundary method, graph theory methods, the gradient descent method and the simplex method. As a result of the analysis, the features of each algorithm are revealed and a comparison of classical methods is made within the framework of the studied problem. Automated placement of objects on the master plan will significantly reduce the design time and improve the quality of project documentation.

The need to comply with the requirements of regulatory documentation, compliance with technological sequence, ensuring safety at the enterprise, compliance with environmental standards – all these and other requirements have an impact on the placement of facilities on the master plan. To be able to automate the master plan, it is necessary to determine effective methods for the optimal location of objects on the territory of the enterprise, including using artificial intelligence.

Pages: 20-27
For citation

Vorontsov G.O., Kovalenko A.V., Ovsyannikova A.V. Classical optimization methods for automated placement of objects on the territory of an industrial enterprise. Nonlinear World. 2024. V. 22. № 4. P. 20–27. DOI: https://doi.org/10.18127/ j20700970-202404-03 (In Russian)

References
  1. SP4.13130.2013 Sistemy protivopozharnoj zashchity. Ogranichenie rasprostraneniya pozhara na ob"ektah zashchity. Trebovaniya k ob"emno-planirovochnym i konstruktivnym resheniyam (In Russian).
  2. SP18.13330.2019 Proizvodstvennye ob"ekty. Planirovochnaya organizaciya zemel'nogo uchastka (general'nye plany promyshlennyh predpriyatij) (In Russian).
  3. SP37.13330.2012 Promyshlennyj transport (In Russian).
  4. Drira A., Pierreval H., Hajri-Gabouj S. Facility layout problems: A survey. Annual Reviews in Control. 2007. V. 31. P. 255–267 (In Russian).
  5. Hosseini-Nasab H., Fereidouni S., Fatemi Ghomi S.M.T., Fakhrzad M.B. Classification of facility layout problems: a review study. Int J. Adv. ManufTechnol. 2018. V. 94. P. 957–977. https://doi.org/10.1007/s00170-017-0895-8.
  6. Voroncov G.O., Kovalenko A.V., Ovsyannikova A.V. Matematicheskie modeli dlya avtomatizirovannogo razmeshcheniya ob"ektov na territorii promyshlennogo predpriyatiya. Energetika – izvestiya vysshih uchebnyh zavedenij energeticheskih ob"edinenij SNG. 2024 (v pechati) (In Russian).
  7. Voroncov G.O., Kovalenko A.V. Matematicheskie modeli dlya avtomatizacii general'nogo plana promyshlennogo predpriyatiya. Prikladnaya matematika: sovremennye problemy matematiki, informatiki i modelirovaniya: materialy VI Vseros. nauch.-prakt. konf. molodyh uchenyh. 2024 (v pechati) (In Russian).
  8. Kovalenko A.V., Voroncov G.O. Optimizaciya komponovki zavoda s pomoshch'yu algoritma mashinnogo obucheniya. Prikladnaya matematika: sovremennye problemy matematiki, informatiki i modelirovaniya: Materialy V Vseros. nauch.-prakt. konf. molodyh uchenyh. 2023. S. 380–383 (In Russian).
  9. Kovalenko A. V. Nejronnaya set' i nechyotkie mnozhestva, kak instrument ocenki kreditosposobnosti zayomshchika. Prikladnaya matematika XXI veka: Materialy VI ob"edinyonnoj nauch. konf. studentov i aspirantov fakul'teta prikladnoj matematiki. 2006. S. 56–58 (In Russian).
  10. Meller, R.D., Narayanan, V., Vance, P.H. Optimal facility layout design. Operations Research Letters. 1999. V. 23(3–5). P. 117–127. https://doi.org/10.1016/S0167-6377(98)00024-8.
  11. Xie W., Sahinidis N.V. A branch-and-bound algorithm for the continuous facility layout problem. Computers and Chemical Engineering. 2008. V. 32. P. 1016–1028. https://doi.org/10.1016/j.compchemeng.2007.05.003.
  12. Solimanpur M., Jafari A. Optimal solution for the two-dimensional facility layout problem using a branch-and-bound algorithm. Computers & Industrial Engineering. 2008. V. 55. P. 606–619. https://doi.org/10.1016/j.cie.2008.01.018.
  13. Sharonin K.A. Algoritmy i kompleks programm postroeniya matematicheskoj modeli komponovki promyshlennyh ob"ektov: Dis. ... kand. tekhn. nauk: 05.13.18. Tambov. 2014. 120 s. (In Russian).
  14. Leung J. A graph-theoretic heuristic for designing loop-layout manufacturing systems. European Journal of Operational Research, 1992. V. 57(2). P. 243–252. DOI:10.1016/0377-2217(92)90046-c.
  15. Zheng X.-J. A connectivity graph generation approach for Manhattan path calculation in detailed facility layout. Applied Mathematics and Computation. 2014. V. 237. P. 238–251. https://doi.org/10.1016/j.amc.2014.03.100.
  16. Zuga I.M. Sistema avtomatizacii proektirovaniya skhem raspolozheniya ob"ektov proizvodstvennyh kompleksov: Dis. ... kand. tekhn. nauk: 05.13.12. Vladimir. 2012. 247 s. (In Russian).
Date of receipt: 06.09.2024
Approved after review: 13.09.2024
Accepted for publication: 29.10.2024